(734) 647-5338

Applications:
Aerospace Engineering, Energy Research, Physics
Methodologies:
Algorithms, Bayesian Methods, Computational Tools for Data Science, Data Collection Design, Deep Learning, Machine Learning, Optimization, Predictive Modeling, Sparse Data Analysis, Statistical Inference

Xun Huan

Assistant Professor

Mechanical Engineering

Prof. Huan’s research broadly revolves around uncertainty quantification, data-driven modeling, and numerical optimization. He focuses on methods to bridge together models and data: e.g., optimal experimental design, Bayesian statistical inference, uncertainty propagation in high-dimensional settings, and algorithms that are robust to model misspecification. He seeks to develop efficient numerical methods that integrate computationally-intensive models with big data, and combine uncertainty quantification with machine learning to enable robust and reliable prediction, design, and decision-making.

Optimal experimental design seeks to identify experiments that produce the most valuable data. For example, when designing a combustion experiment to learn chemical kinetic parameters, design condition A maximizes the expected information gain. When Bayesian inference is performed on data from this experiment, we indeed obtain “tighter” posteriors (with less uncertainty) compared to those obtained from suboptimal design conditions B and C.