734-763-5214

Applications:
Aerospace Engineering, Information Systems, Robotics
Methodologies:
Algorithms, Artificial Intelligence, Bayesian Methods, Decision Science, Dynamical Models, High-Dimensional Data Analysis, Mathematics, Optimization, Statistical Inference, Tensor Analysis

Alex Gorodetsky

Assistant Professor

Department of Aerospace Engineering

Alex Gorodetsky’s research is at the intersection of applied mathematics, data science, and computational science, and is focused on enabling autonomous decision making under uncertainty. He is especially interested in controlling, designing, and analyzing autonomous systems that must act in complex environments where observational data and expensive computational simulations must work together to ensure objectives are achieved. Toward this goal, he pursues research in wide-ranging areas including uncertainty quantification, statistical inference, machine learning, control, and numerical analysis. His methodology is to increase scalability of probabilistic modeling and analysis techniques such as Bayesian inference and uncertainty quantification. His current strategies to achieving scalability revolve around leveraging computational optimal transport, developing tensor network learning algorithms, and creating new multi-fidelity information fusion approaches.

Sample workflow for enabling autonomous decision making under uncertainty for a drone operating in a complex environment. We develop algorithms to compress simulation data by exploiting problem structure. We then embed the compressed representations onto onboard computational resources. Finally, we develop approaches to enable the drone to adapt, learn, and refine knowledge by interacting with, and collecting data from, the environment.