Hamid Ghanbari

By |

My research focuses on using digital health solutions, signal processing, machine learning and ecological momentary assessment to understand the physiological and psychological determinants of symptoms in patients with atrial fibrillation. I am building a research framework for rich data collection using smartphone apps, medical records and wearable sensors. I believe that creating a multidimensional dataset to study atrial fibrillation will yield important insights and serve as model for studying all chronic medical conditions.

Brian Lin

By |

Dr. Brian Lin has 12 years of experience in automotive research at UMTRI after his Ph.D. His current research is focused on mining naturalistic driving data, evaluating driver assistance systems, modeling driver performance and behavior, and estimating driver distraction and workload, using statistical methods, classification, clustering, and survival analysis. His most recent work includes classifying human driver’s decision for a discretionary lane change and traversal at unsignalized intersections, driver’s response to lead vehicle’s movement, and subjective acceptance on automated lane change feature. Dr. Lin also has much experience applying data analytic methods to evaluate automotive system prototypes, including auto-braking, lane departure, driver-state monitoring, electronic head units, car-following and curve-assist systems on level-2 automation, and lane-change and intersection assist on L3 automation on public roads, test tracks, or driving simulators. He is also familiar with the human factors methods to investigate driver distraction, workload, and human-machine interaction with in-vehicle technologies and safety features. He serves as a peer reviewer for Applied Ergonomics, Behavior Research Methods, IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Intelligent Vehicles and Transportation Research Part F.

Elizabeth F. S. Roberts

By |

“Neighborhood Environments as Socio-Techno-bio Systems: Water Quality, Public Trust, and Health in Mexico City (NESTSMX)” is an NSF-funded multi-year collaborative interdisciplinary project that brings together experts in environmental engineering, anthropology, and environmental health from the University of Michigan and the Instituto Nacional de Salud Pública. The PI is Elizabeth Roberts (anthropology), and the co-PIs are Brisa N. Sánchez (biostatistics), Martha M Téllez-Rojo (public health), Branko Kerkez (environmental engineering), and Krista Rule Wigginton (civil and environmental engineering). Our overarching goal for NESTSMX is to develop methods for understanding neighborhoods as “socio-techno-bio systems” and to understand how these systems relate to people’s trust in (or distrust of) their water. In the process, we will collectively contribute to our respective fields of study while we learn how to merge efforts from different disciplinary backgrounds.
NESTSMX works with families living in Mexico City, that participate in an ongoing longitudinal birth-cohort chemical-exposure study (ELEMENT (Early Life Exposures in Mexico to ENvironmental Toxicants, U-M School of Public Health). Our research involves ethnography and environmental engineering fieldwork which we will combine with biomarker data previously gathered by ELEMENT. Our focus will be on the infrastructures and social structures that move water in and out of neighborhoods, households, and bodies.

Testing Real-Time Domestic Water Sensors in Mexico City

Testing Real-Time Domestic Water Sensors in Mexico City

Ivy F. Tso

By |

My lab researches how the human brain processes social and affective information and how these processes are affected in psychiatric disorders, especially schizophrenia and bipolar disorder. We use behavioral, electrophysiological (EEG), neuroimaging (functional MRI), eye tracking, brain stimulation (TMS, tACS), and computational methods in our studies. One main focus of our work is building and validating computational models based on intensive, high-dimensional subject-level behavior and brain data to explain clinical phenomena, parse mechanisms, and predict patient outcome. The goal is to improve diagnostic and prognostic assessment, and to develop personalized treatments.

Brain activation (in parcellated map) during social and face processing.

Meha Jain

By |

​I am an Assistant Professor in the School for Environment and Sustainability at the University of Michigan and am part of the Sustainable Food Systems Initiative. My research examines the impacts of environmental change on agricultural production, and how farmers may adapt to reduce negative impacts. I also examine ways that we can sustainably enhance agricultural production. To do this work, I combine remote sensing and geospatial analyses with household-level and census datasets to examine farmer decision-making and agricultural production across large spatial and temporal scales.

Conducting wheat crop cuts to measure yield in India, which we use to train algorithms that map yield using satellite data

Amie Gordon

By |

My research focuses on understanding the social cognitive, affective, and biological factors that shape our closest relationships. I am particularly interested in identifying factors that help romantic couples and families maintain high quality relationships. My work draws upon a variety of methods, including experimental, observational, naturalistic (e.g., daily experience), and physiological, to capture people at multiple levels in a variety of social situations. I frequently gather dyadic longitudinal data in order to understand how relationship partners influence each other in the moment and over time.

Briana Mezuk

By |

My research program uses epidemiologic methods to examine the interrelationships between mental and physical health over the lifespan. A core feature of my research is the integration of conceptual and analytical approaches, methods, and models from social science, including natural language processing, and clinical/health disciplines with the aim of arriving at a more nuanced and comprehensive understanding of the ways in which mental and physical health interrelate. The goal of this work is to inform interventions that reflect an integrative approach to health.

J.J. Prescott

By |

Broadly, I study legal decision making, including decisions related to crime and employment. I typically use large social science data bases, but also collect my own data using technology or surveys.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021