Dr. Feng’s research involves conducting and using naturalistic observational studies to better understand the interactions between motorists and other road users including bicyclists and pedestrians. The goal is to use an evidence-based, data-driven approach that improves bicycling and walking safety and ultimately makes them viable mobility options. A naturalistic study is a valuable and unique research method that provides continuous, high-time-resolution, rich, and objective data about how people drive/ride/walk for their everyday trips in the real world. It also faces challenges from the sheer volume of the data, and as with all observational studies, there are potential confounding factors compared to a randomized laboratory experiment. Data analytic methods can be developed to interpret the behavioral data, make meaningful inferences, and get actionable insights.
COntact
WebsiteLocation
Dearborn
Methodologies
Causal Inference / Data Visualization / Machine Learning / Statistics
Applications