My research is primarily focused around 1) machine learning methods for understanding healthcare delivery and outcomes in the population, 2) analyses of correlated data (e.g. longitudinal and clustered data), and 3) survival analysis and competing risks analyses. We have developed tree-based and ensemble regression methods for censored and multilevel data, combination classifiers using different types of learning methods, and methodology to identify representative trees from an ensemble. These methods have been applied to important areas of biomedicine, specifically in patient prognostication, in developing clinical decision-making tools, and in identifying complex interactions between patient, provider, and health systems for understanding variations in healthcare utilization and delivery. My substantive areas of research are cancer and pediatric cardiovascular disease.
COntact
WebsiteLocation
Ann Arbor
Methodologies
Data Integration / Machine Learning / Mathematical and Statistical Modeling / Statistics
Applications