Mohamed Abouelenien

Associate Professor, College of Engineering and Computer Science

Affective Computing, computer vision, machine learning, Multimodal Interaction, Natural language processing

Mohamed Abouelenien’s areas of interest broadly cover data science topics, including applied machine learning, computer vision, and natural language processing. He established the Affective Computing and Multimodal Systems Lab (ACMS) which focuses on modeling human behavior and developing multimodal approaches for different applications. He has worked on a number of projects in these areas, including multimodal deception detection, multimodal sensing of drivers’ alertness levels and thermal discomfort, distraction detection, circadian rhythm modeling, emotion and stress analysis, automated scoring of students’ progression, sentiment analysis, ensemble learning, and image processing, among others. His research is funded by Ford Motor Company (Ford), Educational Testing Service (ETS), Toyota Research institute (TRI), and Procter & Gamble (P&G). Abouelenien has published in several top venues in IEEE, ACM, Springer, and SPIE. He also served as a reviewer for IEEE transactions and Elsevier journals and served as a program committee member for multiple international conferences.