Albert S. Berahas is an Assistant Professor in the department of Industrial & Operations Engineering. His research broadly focuses on designing, developing and analyzing algorithms for solving large scale nonlinear optimization problems. Such problems are ubiquitous, and arise in a plethora of areas such as engineering design, economics, transportation, robotics, machine learning and statistics. Specifically, he is interested in and has explored several sub-fields of nonlinear optimization such as: (i) general nonlinear optimization algorithms, (ii) optimization algorithms for machine learning, (iii) constrained optimization, (iv) stochastic optimization, (v) derivative-free optimization, and (vi) distributed optimization.
9.9.2020 MIDAS Faculty Research Pitch Video.
Accomplishments and Awards
- 2021 Propelling Original Data Science (PODS) Grant Award: IPODS: Innovative and Powerful Optimization Methods for Data Science with Statistical Guarantees