Murali Mani

Professor, Computer Science

Murali Mani, PhD, is Professor of Computer Science at the University of Michigan, Flint.

The significant research problems Prof. Mani is investigating include the following: big data management, big data analytics and visualization, provenance, query processing of encrypted data, event stream processing, XML stream processing. data modeling using XML schemas, and effective computer science education. In addition, he has worked in industry on clickstream analytics (2015), and on web search engines (1999-2000). Prof. Mani’s significant publications are listed on DBLP at: http://dblp.uni-trier.de/pers/hd/m/Mani:Murali.

9.9.2020 MIDAS Faculty Research Pitch Video.

MIDAS Faculty Research Pitch, Fall 2021

Illustrating how our SMART system effectively integrates big data processing and data visualization to enable big data visualization. The left side shows a typical data visualization scenario, where the different analysts are using their different visualization systems. These visualization systems can provide interactive visualizations but cannot handle the complexities of big data. They interact with a distributed data processing system that can handle the complexities of big data. The SMART system improves the user experience by carefully sending additional data to the visualization system in response to a request from an analyst so that future visualization requests can be answered directly by the visualization system without accessing the data processing system.
Illustrating how our SMART system effectively integrates big data processing and data visualization to enable big data visualization. The left side shows a typical data visualization scenario, where the different analysts are using their different visualization systems. These visualization systems can provide interactive visualizations but cannot handle the complexities of big data. They interact with a distributed data processing system that can handle the complexities of big data. The SMART system improves the user experience by carefully sending additional data to the visualization system in response to a request from an analyst so that future visualization requests can be answered directly by the visualization system without accessing the data processing system.

Accomplishments and Awards