Assistant Professor, Computer Science and Engineering, Electrical Engineering and Computer Science
Foundations of algorithmic fairness, theory of data science
My research tackles how human values can be incorporated into machine learning and other computational systems. This includes work on the translation process from human values to computational definitions and work on how to understand and encourage fairness while preventing discrimination in machine learning and data science. My research combines tools from the theory of machine learning with insights from economics, science and technology studies, and philosophy, among others, to improve our theories of the translation process and the algorithms we create. In settings like classification, social networks, and data markets, I explore the ways in which human values play a primary role in the quality of machine learning and data science.