Yuekai Sun, PhD, is Assistant Professor in the department of Statistics at the University of Michigan, Ann Arbor.
Dr. Sun’s research is motivated by the challenges of analyzing massive data sets in data-driven science and engineering. I focus on statistical methodology for high-dimensional problems; i.e. problems where the number of unknown parameters is comparable to or exceeds the sample size. My recent work focuses on two problems that arise in learning from high-dimensional data (versus black-box approaches that do not yield insights into the underlying data-generation process). They are:
1. model selection and post-selection inference: discover the latent low-dimensional structure in high-dimensional data and perform inference on the learned structure;
2. distributed statistical computing: design scalable estimators and algorithms that avoid communication and minimize “passes” over the data.
A recurring theme in my work is exploiting the geometry of latent low-dimensional structure for statistical and computational gains. More broadly, I am interested in the geometric aspects of high-dimensional data analysis.