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Acute Respiratory Distress Syndrome (ARDS) METHODS EXPERIMENTS & RESULTS

Develops in the lungs of critically ill patients and prevents effective gas transport . ]
Leads to severely low blood-oxygen levels Data Preprocessmg Experlment 2

Mortality rates associated with ARDS range from 26-58% in part due to an
estimated 70% of cases being diagnosed late or not at all
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 Patients were reviewed for having ARDS by up to 6 clinicians EXPERIMENTS & RESULTS W e
* C(Clinicians evaluated patients using the Berlin Definition

Study Population Experiment 1

Take-Aways
r Does our EHR-based model outperform the LIPS model? o _
ovariate collection period * EHR model outperforms the LIPS model in its given task while also
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Median Age (years) [IQR] 62.0 [51.0 - 70.0] Future Wor
Median length of stay (days) [IQR] 5.8[2.9-6.0] No. of Description Median AUROC  Time-varying parameters: Leverage the temporal aspects of our data
Median Time of ARDS diagnosis features (95% Cl) through LSTMs to improve predictive performance of our model
from admission (hours) [IQR] 44.5 [16.0 - 59.3] Learning latent feature representation: Use unsupervised learning and
Baseline EHR EHR features  0.81 (0.59-0.93) autoencoders to learn a new feature representation to improve predictive
Comparison to Lung Injury Prediction Score (LIPS) LIPS 1 LIPS score  0.73 (0.59-0.88) performance
* Only current clinical model for predicting development of ARDS
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* LIPS has 22 variables (e.g. obesity, diabetes) with reported AUROC of 0.8 LIPS+ 22 LIPS features  0.65 (0.37-0.89)




