VAN HAI BUI

Van Hai Bui

By |

Dr. Bui’s research focuses on the operation and control of power and energy systems. We develop energy management systems aimed at optimizing the entire system’s operation to minimize operation costs, enhance system reliability, and improve system resiliency in both normal and emergency operation modes. Recently, the high penetration of distributed energy resources (DERs), including photovoltaics, wind turbines, and controllable distributed generators, in modern power systems has introduced numerous sources of uncertainty, making the operation and control of power systems significantly challenging. Conventional optimization methods often struggle to handle the high uncertainty of DER outputs. With the rapid development of AI/ML algorithms and their wide applications in the engineering domain, these techniques offer potential solutions for operating and controlling power systems. Our research group also investigates the state-of-the-art models in ML, such as deep learning, deep reinforcement learning, and physics-informed graph neural networks, and their applications in power and energy systems.

Changxiao Cai

Changxiao Cai

By |

Changxiao Cai’s research interests lie broadly in the intersection of statistics, optimization, and machine learning. He is interested in developing provably scalable methods for information extraction from high-dimensional data, with an aim to achieve the optimal interplay between statistical accuracy and computational efficiency.

jianghui

Hui Jiang

By |

My research focuses on statistical genomics and computational statistics. I am interested in developing statistical and computational methods for the analysis of large-scale biological datasets generated by modern high-throughput technologies such as next-generation sequencing. I implemented many of the methods that I developed as software tools and packages to be used by the research community. I am also interested in developing efficient algorithms and methods that deal with computational problems arising from statistics genomics. I have worked on and am working on problems including efficient algorithms for resampling-based hypothesis testing, penalized modeling and optimization algorithms for model fitting, as well as computational methods for density estimation and machine learning.

Majdi Radaideh

Majdi Radaideh

By |

Prof. Majdi Radaideh leads the Artificial Intelligence and Multiphysics Simulations lab (AIMS), which focuses on the intersection between nuclear reactor design, nuclear multiphysics modeling and simulation, advanced computational methods, and machine learning algorithms to drive advanced reactor research and improve the sustainability of the current reactor fleet. AIMS extensively employs data science and machine learning methods for various goals including but not limited to:
1- Development of surrogate models for expensive nuclear reactor simulations in steady-state and time-dependent modes using convolutional and recurrent neural networks.
2- Large-scale combinatorial optimization to improve the performance of the nuclear fuel inside nuclear power plants using physics-informed reinforcement learning and neuroevolution algorithms.
3- Long-short term memory and ensemble methods for anomaly detection and fault prognosis to monitor the health of the nuclear power plant components.
4- Uncertainty quantification of data-driven models with Bayesian inference and Gaussian processes.
5- Natural language processing methods to process nuclear plant maintenance and burnup records.

AIMS lab aims on bridging the gap between nuclear reactor design, nuclear multiphysics modeling and simulation, advanced computational methods, and machine learning algorithms to drive advanced nuclear reactor research and improve the sustainability of the current reactor fleet to promote nuclear power as a carbon-free energy source in order to achieve net-zero carbon emission.

Wei Hu

Wei Hu

By |

Wei Hu is broadly interested in the theoretical and scientific foundations of modern machine learning, especially deep learning. His research aims to obtain a solid, rigorous, and practically relevant theoretical understanding of machine learning pipelines, as well as to develop principles to make them more reliable and efficient.

Stefanus Jasin

By |

My research focus the application and development of new algorithms for solving complex business analytics problems. Applications vary from revenue management, dynamic pricing, marketing analytics, to retail logistics. In terms of methodology, I use a combination of operations research and machine learning/online optimization techniques.

 

Sardar Ansari

By |

I build data science tools to address challenges in medicine and clinical care. Specifically, I apply signal processing, image processing and machine learning techniques, including deep convolutional and recurrent neural networks and natural language processing, to aid diagnosis, prognosis and treatment of patients with acute and chronic conditions. In addition, I conduct research on novel approaches to represent clinical data and combine supervised and unsupervised methods to improve model performance and reduce the labeling burden. Another active area of my research is design, implementation and utilization of novel wearable devices for non-invasive patient monitoring in hospital and at home. This includes integration of the information that is measured by wearables with the data available in the electronic health records, including medical codes, waveforms and images, among others. Another area of my research involves linear, non-linear and discrete optimization and queuing theory to build new solutions for healthcare logistic planning, including stochastic approximation methods to model complex systems such as dispatch policies for emergency systems with multi-server dispatches, variable server load, multiple priority levels, etc.

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.

Zhen Hu

By |

I am an assistant professor in Department of Industrial and Manufacturing Systems Engineering (IMSE) at the University of Michigan-Dearborn. Prior to joining UM-Dearborn, I was a research assistant professor and postdoctoral research scholar at Vanderbilt University. My research areas of interest are uncertainty quantification, Bayesian data analytics, big data analytics, machine learning, optimization under uncertainty, and applications of data analytics and machine learning in aerospace, mechanical and manufacturing systems, and material science. The goal of my research is to develop novel computational methods to design sustainable and reliable engineering systems by leveraging the rich information contained in the high-fidelity computational simulation models, experimental data, and big operational data and historical data.

Jin Lu

By |

Dr. Jin Lu is an Assistant Professor of Computer and Information Science at the University of Michigan, Dearborn.
His major research interests include machine learning, data mining, optimization, matrix analysis, biomedical informatics, and health informatics. Two main directions are being pursued:
(1) Large-scale machine learning problems with data heterogeneity. Data heterogeneity is common across many high-impact application domains, ranging from recommendation system to Computer Vision, Bioinformatics and Health-informatics. Such heterogeneity can be present in a variety of forms, including (a) sample heterogeneity, where multiple resources of data samples are available as side information; (b) task heterogeneity, where multiple related learning tasks can be jointly learned to improve the overall performance; (c) view heterogeneity, where complementary information is available from various sources. My research interests focus on building efficient machine learning methods from such data heterogeneity, aiming to improve the learning model by making the best use of all data resources.
(2) Machine learning methods with provable guarantees. Machine learning has been substantially developed and has demonstrated great success in various domains. Despite its practical success, many of the applications involve solving NP-hard problems based on heuristics. It is challenging to analyze whether a heuristic scheme has any theoretical guarantee. My research interest is to employ granular data structure, e.g. sample clusters or features describing an aspect of the sample, to design new theoretically-sound models and algorithms for machine learning problems.