Mohamed Abouelenien

By |

Mohamed Abouelenien’s areas of interest broadly cover data science topics, including applied machine learning, computer vision, and natural language processing. He established the Affective Computing and Multimodal Systems Lab (ACMS) which focuses on modeling human behavior and developing multimodal approaches for different applications. He has worked on a number of projects in these areas, including multimodal deception detection, multimodal sensing of drivers’ alertness levels and thermal discomfort, distraction detection, circadian rhythm modeling, emotion and stress analysis, automated scoring of students’ progression, sentiment analysis, ensemble learning, and image processing, among others. His research is funded by Ford Motor Company (Ford), Educational Testing Service (ETS), Toyota Research institute (TRI), and Procter & Gamble (P&G). Abouelenien has published in several top venues in IEEE, ACM, Springer, and SPIE. He also served as a reviewer for IEEE transactions and Elsevier journals and served as a program committee member for multiple international conferences.

Michael Sjoding

By |

Application of machine learning and artificial intelligence in healthcare, particularly in the field of pulmonary and critical care medicine. Deep learning applied to radiologic imaging studies. Physician and artificial intelligence interactions and collaborations. Identifying and addressing algorithmic bias.


Accomplishments and Awards

Alexander Rodríguez

By |

Alex’s research interests include machine learning, time series, multi-agent systems, uncertainty quantification, and scientific modeling. His recent focus is on developing trustworthy AI systems that can offer insightful guidance for critical decisions, especially in applications involving complex spatiotemporal dynamics. His work is primarily motivated by real-world problems in public health, environmental health and community resilience.

Saif Benjaafar

Saif Benjaafar

By |

I used the tools of operations research (optimization, stochastic modeling, and game theory), machine learning, and statistics to study problems in operations management broadly defined, including supply chains, service systems, transportation and mobility, and markets. My current research focus is on sustainable operations and innovative business models, including sharing economy, on-demand services, and online marketplaces.

Changxiao Cai

Changxiao Cai

By |

Changxiao Cai’s research interests lie broadly in the intersection of statistics, optimization, and machine learning. He is interested in developing provably scalable methods for information extraction from high-dimensional data, with an aim to achieve the optimal interplay between statistical accuracy and computational efficiency.

jianghui

Hui Jiang

By |

My research focuses on statistical genomics and computational statistics. I am interested in developing statistical and computational methods for the analysis of large-scale biological datasets generated by modern high-throughput technologies such as next-generation sequencing. I implemented many of the methods that I developed as software tools and packages to be used by the research community. I am also interested in developing efficient algorithms and methods that deal with computational problems arising from statistics genomics. I have worked on and am working on problems including efficient algorithms for resampling-based hypothesis testing, penalized modeling and optimization algorithms for model fitting, as well as computational methods for density estimation and machine learning.

Runzi Wang

Runzi Wang

By |

Runzi Wang is a transdisciplinary researcher who studies change in natural and urban environments across space and over time, with the objective of driving positive change with ecological planning and design strategies. Combining technologies such as big data, machine learning, remote sensing, and spatial statistics, her primary research explores how land cover change and urban development pattern influence stream water quality and stormwater quality at the watershed basis, together with various environmental, climatic, and sociocultural factors. By enhancing the interpretability of machine learning in its application to landscape architecture, the most innovative part of her research is to uncover the nonlinear, interacted relationships between environmental, technological, and sociocultural dimensions of landscape systems.

What are some of your most interesting projects?

  1. I conducted the first continental-scale urban stream water quality study funded by MIDAS. We applied geospatial analysis to investigate the characteristics of the built environment (e.g., building footprint, street length, land use spatial pattern) associated with urban stream water quality, the social inequities regarding exposure to stream water contamination, as well as the spatial variations in the above processes. We developed data integration protocols for data from remote sensing products, in-situ observations, and the US Census Bureau. Using Bayesian hierarchical models, we concluded that watersheds with a higher percentage of minorities are associated with higher nutrient pollution, with the relationship being more significant in the American Northwest.
  2. I investigated how land use planning and best management practices mitigated climate change effects on Lake Erie’s water quality. With the integration of longitudinal watershed land cover, agricultural, and climatic data from 1985-2017, we found that no-tillage and reduced tillage management were effective mitigation strategies that could decrease water quality sensitivity to climate change. We plan to advance this work by fusing remote sensing-based bloom detection and process-based simulation to investigate how climate change, land cover change, and anthropogenic activities will impact the eutrophication of Lake Erie.

How did you end up where you are today?

I have a highly interdisciplinary background, receiving training in architecture, landscape architecture, urban planning, statistics, hydrology and water quality, and broader social science topics. This forms my research topic to study the relationships between people, land, and water. Specifically, I study the interconnectedness between people living in the watershed, the land use and urban form of the watershed’s built form, the resulting water quality conditions, and the ecosystem services urban streams provide for people. This background also leverages many different methodologies in my work, including data science, hydrological models, social science methods, and so on. In addition, the most important thing about my research journey is that I have a few excellent friends/researchers who help me a lot on my way and make my research life inspiring and delightful most of the time.

 


Accomplishments and Awards

Peter Song

Peter Song

By |

My research interests lie in two major fields: In the field of statistical methodology, my interests include data integration, distributed inference, federated learning and meta learning, high-dimensional statistics, mixed integer optimization, statistical machine learning, and spatiotemporal modeling. In the field of empirical study, my interests include bioinformatics, biological aging, epigenetics, environmental health sciences, nephrology, nutritional sciences, obesity, and statistical genetics.

Thuy Le

Thuy Le

By |

Dr. Le is an assistant research scientist at the University of Michigan Department of Health Management and Policy. Dr Le is also a member of the UM/Georgetown TCORS Center for the Assessment of Tobacco Regulations (CAsToR). Dr. Le is interested in mathematical modeling for cancer- and tobacco-related problems, and machine-learning applications in tobacco regulatory science. Dr. Le has developed mathematical models to evaluate the benefits and harms of breast cancer mammography and predict the number of white blood cells during acute lymphoblastic maintenance therapy in children. Dr. Le’s recent work focuses on employing mathematical models to quantify the burden of menthol cigarettes on public health and estimate the smoking cessation rate. Dr. Le is working on applying machine learning techniques to predict and understand smoking behaviors.