Tag

MIDAS

MIDAS Health Sciences Challenge Symposium

By |

Data-intensive health science is one of the research focus areas that MIDAS supports with its Challenge Awards.  Our long-term goal is to support this research area more broadly, using the Challenge Award projects as the starting point to build a critical mass.  This symposium offers a platform for all participants to explore collaboration opportunities and aims to attract more researchers to our hub.  It will feature in-depth presentations from three Challenge Award teams, and all participants are encouraged to submit posters on data-intensive health science research.

Agenda

9 am to 12:50 pm: Welcome and Challenge Award Presentations

12:50 pm to 2:15 pm: Lunch, Poster Session and Networking [poster dimensions: up to 6ft wide X 4ft height]

2:15 pm: Panel Discussion: The Future of Data-intensive Health Sciences at U-M.

  • Panelists: Brian Athey (Moderator), Marisa Eisenberg, Jun Li, Brahmajee Nallamothu, Srijan Sen, Kevin Ward

Please register online.  Please submit poster abstracts (< 300 words).  Submission Deadline: April 28.

For questions: midas-research@umich.edu.

Women in Data Science: Stanford University, March 5, 2018

By |

Women in Data Science (WiDS) Conference

and Datathon

Registration for Livestream

Schedule

The Global Women in Data Science (WiDS) Conference aims to inspire and educate data scientists worldwide, regardless of gender, and support women in the field. This annual one-day technical conference provides an opportunity to hear about the latest data science related research and applications in a broad set of domains, All genders are invited to participate in the conference, which features exclusively female speakers.

Next WiDS Conference: March 5, 2018 at Stanford University & 100+ locations worldwide
WiDS will be held at Stanford university, and at 100+ regional events hosted by WiDS Ambassadorsand available via livestream. The 2018 program will feature fantastic speakers on a broad array of topics ranging from cybersecurity to astrophysics to computational finance, and more. Register now for an event near you.

New for 2018: WiDS Datathon
This year, we’ll be conducting the first-ever WiDS Datathon, a joint effort between Stanford, Kaggle (a Google company), Intuit, InterMedia (a recipient of the Bill & Melinda Gates foundation, and West Big Data Innovation Hub.. The datathon runs from February 1-28, 2018, and winners will be announced at our March 5, 2018, conference at Stanford.

2017 Conference Highlights

  • 75,000+ participants from 75 countries via live stream and Facebook Live, at regional events or online
  • 80+ regional events worldwide from 30 countries, simultaneous or delayed broadcast, many with regional speakers.
  • #WiDS2017 hashtag trended on Twitter all day long
  • WiDS Stanford: 400 attendees from 31 universities and 114 companies and other organizations​, with 1/3 students and 2/3 academics and industry professionals
  • 33 distinguished female speakers, moderators, and panelists

MIDAS Working Group: Teaching Data Science

By |

 

The Michigan Institute for Data Science (MIDAS) continues to convene a working group on teaching data science. As we incorporate data science into almost every level of teaching, many issues need to be thoroughly thought out: How do we teach data science to students with various levels of preparation, from those with little quantitative training to STEM students? How do we build data science modules to incorporate into existing domain science courses? How do we raise awareness of ethics and social responsibility in data science teaching? How do we teach data science to independent researchers, including faculty, who want to build data science into their research? What teaching resources are available at UM? Our working group welcomes anyone interested in these topics. We are developing an interdisciplinary team to foster new ideas and collaborations in the development of data science teaching methods and materials.

Please RSVP.  

The agenda for the meeting includes:

  • Introduction
  • Short presentations
    • Kerby Shedden (Professor, Statistics, and CSCAR director) will share insight from his experience teaching “capstone” style courses for undergraduate and MS students, based around case studies and focus on methods, formulating good questions, and writing.
    • Heather Mayes (Assistant Professor, Chemical Engineering) will talk about the design of a Data Science ramp-up course for engineering students and how to integrate it with existing course offerings.
    • Aaron Keys (data scientist, Airbnb) will give the industry perspective on the various training paths that students can take for a career in data science.
  • Open discussion of ideas and collaboration, and sharing resources

For questions, please contact Jing Liu, MIDAS Senior Scientist and Industry Partnership Leader (ljing@umich.edu734-764-2750).

MIDAS Working Group: Data Integration

By |

 

Data integration is an essential component of data science research in almost all research areas that use heterogeneous data varying in format, dimensionality, quality and granularity.  The examples are endless: multi-omics data integration is increasingly critical in biological research; clinical research benefits greatly from the integration of patient longitudinal data, lab data, sensor data and other types of diagnosis and self-report; environmental monitoring often needs the integration of statistical data, image data and geospatial data; social science research, including education, political science and economics, increasingly integrates social media and other web-based data with traditional survey data…  All the applications encounter similar data science challenges, including idiosyncratic integration methods, missing data, bias and coverage, consistency and quality control issues.  Our working group welcomes researchers with interest in data integration methodology and its application in any scientific domain.  The Michigan Institute for Data Science (MIDAS) continues to convene a research working group on data integration to create a forum that will foster new ideas and collaborations.

Please RSVP.

Agenda:

  • Introduction
  • Chalk talks
    • Yang Chen (Assistant Professor, Dept. Statistics) will talk about her experience on data integration and some statistical methodology, and seek interests in collaboration.
    • Jamie Estill (staff scientist, HITS) will describe at a high level the capabilities and strength of data virtualization for data integration, using medical research examples, and discuss with the group how data virtualization can facilitate their research.
  • Open discussion on ideas and collaboration.

For questions, please contact Jing Liu, MIDAS Senior Scientist and Industry Partnership Leader (ljing@umich.edu; 734-764-2750).  Please share this announcement with your colleagues who might be interested.

2017 MIDAS Symposium

By |

Please join us for the 2017 Michigan Institute for Data Science Symposium.

The keynote speaker will be Cathy O’Neil, mathematician and best-selling author of “Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy.”

Other speakers include:

  • Nadya Bliss, Director of the Global Security Initiative, Arizona State University
  • Francesca Dominici, Co-Director of the Data Science Initiative and Professor of Biostatistics, Harvard T.H. Chan School of Public Health
  • Daniela Whitten, Associate Professor of Statistics and Biostatistics, University of Washington
  • James Pennebaker, Professor of Psychology, University of Texas

More details are available at: http://midas.umich.edu/2017-symposium/

MIDAS Data Integration Working Group

By |

The Michigan Institute for Data Science (MIDAS) is convening a research working group on data integration.  Data integration is an essential component of data science research in almost all research areas that use heterogeneous data varying in format, dimensionality, quality and granularity.  The examples are endless: multi-omics data integration is increasingly critical in biological research; clinical research benefits greatly from the integration of patient longitudinal data, lab data, sensor data and other types of diagnosis and self-report; environmental monitoring often needs the integration of statistical data, image data and geospatial data; social science research, including education, political science and economics, increasingly integrates social media and other web-based data with traditional survey data…  All the applications encounter similar data science challenges, including idiosyncratic integration methods, missing data, bias and coverage, consistency and quality control issues.  Our working group welcomes researchers with interest in data integration methodology and its application in any scientific domain.  We hope to create an interdisciplinary forum that will foster new ideas and collaborations.

Agenda:

  • Introduction.  Each participant has a few minutes (based on the number of RSVPs) to present
    • their research background, interest and needs for collaboration, and
    • current projects involving data integration
  • Short chalk talks.  2-3 slots are available for 10-minute presentations if you want to
    • seek the group’s input on methods and discuss roadblocks and/or
    • share useful methods or tools
  • Open discussion on ideas, collaboration and current funding announcements.

Future Plan: Based on the interest of participants, MIDAS will hold regular meetings on data integration (chalk talks, discussion of funding announcements, etc.), and work with the UM Business Engagement Center to bring in industry partnership as needed.

Please RSVP.  For questions, please contact Jing Liu, MIDAS Senior Scientist and Industry Partnership Leader (ljing@umich.edu; 734-764-2750).  Please share this announcement with your colleagues who might be interested.

Call for Proposals: Amazon Research Awards, deadline 9/15/17

By | Data, Educational, Funding Opportunities, News, Research

The Amazon Research Awards (ARA) program offers awards of up to $80,000 in cash and $20,000 in AWS promotional credits to faculty members at academic institutions in North America and Europe for research in these areas:

  • Computer vision
  • General AI
  • Knowledge management and data quality
  • Machine learning
  • Machine translation
  • Natural language understanding
  • Personalization
  • Robotics
  • Search and information retrieval
  • Security, privacy and abuse prevention
  • Speech

The ARA program funds projects conducted primarily by PhD students or post docs, under the supervision of the faculty member awarded the funds. To encourage collaboration and the sharing of insights, each funded proposal team is assigned an appropriate Amazon research contact. Amazon invites ARA recipients to speak at Amazon offices worldwide about their work, meet with Amazon research groups face-to-face, and encourages ARA recipients to publish their research outcome and commit related code to open-source code repositories.

Submissions are to be made online and details including rules and who may apply are located here.

SAVE THE DATE: MIDAS Annual Symposium, Oct. 11

By | Events, General Interest, News

Please join us for the 2017 Michigan Institute for Data Science Symposium.

The keynote speaker will be Cathy O’Neil, mathematician and best-selling author of “Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy.”

Other speakers include:

  • Nadya Bliss, Director of the Global Security Initiative, Arizona State University
  • Francesca Dominici, Co-Director of the Data Science Initiative and Professor of Biostatistics, Harvard T.H. Chan School of Public Health
  • Daniela Witten, Associate Professor of Statistics and Biostatistics, University of Washington
  • James Pennebaker, Professor of Psychology, University of Texas

More details, including how to register, will be available soon.

MIDAS working group on mobile sensor analytics

By |

The Michigan Institute for Data Science (MIDAS) is convening a research working group on mobile sensor analytics. Mobile sensors are taking on an increasing presence in our lives. Wearable devices allow for physiological and cognitive monitoring, and behavior modeling for health maintenance, exercise, sports, and entertainment. Sensors in vehicles measure vehicle kinematics, record driver behavior, and increase perimeter awareness. Mobile sensors are becoming essential in areas such as environmental monitoring and epidemiological tracking.

There are significant data science opportunities for theory and application in mobile sensor analytics, including real-time data collection, streaming data analysis, active on-line learning, mobile sensor networks, and energy efficient mobile computing.

Our working group welcomes researchers with interest in mobile sensor analytics in any scientific domain, including but not limited to health, transportation, smart cities, ecology and the environment.

Agenda:

  • Brief presentations about challenges and opportunities in mobile sensor analytics (theory and application);

  • A brief presentation of a list of funding opportunities;

  • Discussion of research ideas and collaboration in the context of grant application and industry partnership.

Please RSVP.  For questions, please contact Jing Liu, Ph.D, MIDAS research specialist (ljing@umich.edu; 734-764-2750).