Jesse Hamilton

By |

My research focuses on the development of novel Magnetic Resonance Imaging (MRI) technology for imaging the heart. We focus in particular on quantitative imaging techniques, in which the signal intensity at each pixel in an image represents a measurement of an inherent property of a tissue. Much of our research is based on cardiac Magnetic Resonance Fingerprinting (MRF), which is a class of methods for simultaneously measuring multiple tissue properties from one rapid acquisition.

Our group is exploring novel ways to combine physics-based modeling of MRI scans with deep learning algorithms for several purposes. First, we are exploring the use of deep learning to design quantitative MRI scans with improved accuracy and precision. Second, we are developing deep learning approaches for image reconstruction that will allow us to reduce image noise, improve spatial resolution and volumetric coverage, and enable highly accelerated acquisitions to shorten scan times. Third, we are exploring ways of using artificial intelligence to derive physiological motion signals directly from MRI data to enable continuous scanning that is robust to cardiac and breathing motion. In general, we focus on algorithms that are either self-supervised or use training data generated in computer simulations, since the collection of large amounts of training data from human subjects is often impractical when designing novel imaging methods.

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.

Catherine Hausman

By |

Catherine H. Hausman is an Associate Professor in the School of Public Policy and a Research Associate at the National Bureau of Economic Research. She uses causal inference, related statistical methods, and microeconomic modeling to answer questions at the intersection of energy markets, environmental quality, climate change, and public policy.

Recent projects have looked at inequality and environmental quality, the natural gas sector’s role in methane leaks, the impact of climate change on the electricity grid, and the effects of nuclear power plant closures. Her research has appeared in the American Economic Journal: Applied Economics, the American Economic Journal: Economic Policy, the Brookings Papers on Economic Activity, and the Proceedings of the National Academy of Sciences.

Elliott Rouse

By |

My reserach group–theNeurobionics Lab–has two chief goals. Firstly, we seek to answer fundamental questions about human locomotion through a deeper understanding of how limb mechanics are felt and regulated by the nervous system. These properties are important because they govern how people respond to disturbances during gait, such as unexpectedly stepping on an obstacle, or carefully walking over uneven terrain. Moreover, the ability to regulate these mechanics is drastically impaired following neurological injury. As a result, impaired individuals fall more frequently, fatigue faster, and have abnormal gait patterns that inhibit daily life. The more we understand about how the brain controls the body during locomotion, the better we can assess, track, and treat the changes that occur following neurological injury.

The second mission of the group is to develop technologies that address the deficits that arise from neuropathologies and amputation. We leverage biomimetic design and control approaches to develop novel wearable robotic systems. Our intent is to not only address the locomotor deficits of these individuals, but also enable them to exceed the performance of their able-bodied counterparts. Our approach is unique: the biomechanical science that we discover is used to develop a new class of assistive technology. Through interdisciplinary, bidirectional feedback between science and engineering, the Neurobionics Lab conducts innovative work that will eventually impact the lives of the disabled.

Rahul Ladhania

By |

Rahul Ladhania is an Assistant Professor of Health Informatics in the Department of Health Management & Policy at the University of Michigan School of Public Health. He also has a secondary (courtesy) appointment with the Department of Biostatistics at SPH. Rahul’s research is in the area of causal inference and machine learning in public and behavioral health. A large body of his work focuses on estimating personalized treatment rules and heterogeneous effects of policy, digital and behavioral interventions on human behavior and health outcomes in complex experimental and observational settings using statistical machine learning methods.

Rahul co-leads the Machine Learning team at the Behavior Change For Good Initiative (Penn), where he is working on two `mega-studies’ (very large multi-arm randomized trials): one in partnership with a national fitness chain, to estimate the effects of behavioral interventions on promoting gym visit habit formation; and the other in partnership with two large Mid-Atlantic health systems and a national pharmacy chain, to estimate the effects of text-based interventions on increasing flu shot vaccination rates. His other projects involve partnerships with step-counting apps and mobile-based games to learn user behavior patterns, and design and evaluate interventions and their heterogeneous effects on user behavior.

Ranjan Pal

By |

Cyber-security is a complex and multi-dimensional research field. My research style comprises an inter-disciplinary (primarily rooted in economics, econometrics, data science (AI/ML/Bayesian and Frequentist Statistics), game theory, and network science) investigation of major socially pressing issues impacting the quality of cyber-risk management in modern networked and distributed engineering systems such as IoT-driven critical infrastructures, cloud-based service networks, and app-based systems (e.g., mobile commerce, smart homes) to name a few. I take delight in proposing data-driven, rigorous, and interdisciplinary solutions to both, existing fundamental challenges that pose a practical bottleneck to (cost) effective cyber-risk management, and futuristic cyber-security and privacy issues that might plague modern (networked) engineering systems. I strongly strive for originality, practical significance, and mathematical rigor in my solutions. One of my primary end goals is to conceptually get arms around complex, multi-dimensional information security and privacy problems in a way that helps, informs, and empowers practitioners and policy makers to take the right steps in making the cyber-space more secure.

Carlos Aguilar

By |

The Aguilar group is focused understanding transcriptional and epigenetic mechanisms of skeletal muscle stem cells in diverse contexts such as regeneration after injury and aging. We focus on this area because there are little to no therapies for skeletal muscle after injury or aging. We use various types of in-vivo and in-vitro models in combination with genomic assays and high-throughput sequencing to study these molecular mechanisms.

Xu Shi

By |

My methodological research focus on developing statistical methods for routinely collected healthcare databases such as electronic health records (EHR) and claims data. I aim to tackle the unique challenges that arise from the secondary use of real-world data for research purposes. Specifically, I develop novel causal inference methods and semiparametric efficiency theory that harness the full potential of EHR data to address comparative effectiveness and safety questions. I develop scalable and automated pipelines for curation and harmonization of EHR data across healthcare systems and coding systems.

Quan Nguyen

By |

My research focuses on the application of data science in educational research, so called learning analytics. I have experience analyzing educational data on a large-scale to understand a) how course design influence students’ learning behavior and b) how students form peer networks. My work involves using multiple educational data sources such as log-data in online learning environment, course information, students’ academic records, and location data gathered from campus WiFi networks. I am interested in network analysis, time-series analysis, and machine learning.

Akbar Waljee

By |

I use machine-learning techniques to implement decision support systems and tools that facilitate more personalized care for disease management and healthcare utilization to ultimately deliver efficient, effective, and equitable therapy for chronic diseases. To test and advance these general principles, I have built operational programs that are guiding—and improving—patient care in costly in low resource settings, including emerging countries.