Explore ARCExplore ARC

Yongsheng Bai

By |

Dr. Bai’s research interests lie in development and refinement of bioinformatics algorithms/software and databases on next-generation sequencing (NGS data), development of statistical model for solving biological problems, bioinformatics analysis of clinical data, as well as other topics including, but not limited to, uncovering disease genes and variants using informatics approaches, computational analysis of cis-regulation and comparative motif finding, large-scale genome annotation, comparative “omics”, and evolutionary genomics.

Patrick Schloss

By |

The Schloss lab is broadly interested in beneficial and pathogenic host-microbiome interactions with the goal of improving our understanding of how the microbiome can be used to reach translational outcomes in the prevention, detection, and treatment of colorectal cancer, Crohn’s disease, and Clostridium difficile infection. To address these questions, we test traditional ecological theory in the microbial context using a systems biology approach. Specifically, the laboratory specializes in using studies involving human subjects and animal models to understand how biological diversity affects community function using a variety of culture-independent genomics techniques including sequencing 16S rRNA gene fragments, metagenomics, and metatranscriptomics. In addition, they use metabolomics to understand the functional role of the gut microbiota in states of health and disease. To support these efforts, they develop and apply bioinformatic tools to facilitate their analysis. Most notable is the development of the mothur software package (https://www.mothur.org), which is one of the most widely used tools for analyzing microbiome data and has been cited more than 7,300 times since it was initially published in 2009. The Schloss lab deftly merges the ability to collect data to answer important biological questions using cutting edge wet-lab techniques and computational tools to synthesize these data to answer their biological questions.

Given the explosion in microbiome research over the past 15 years, the Schloss lab has also stood at the center of a major effort to train interdisciplinary scientists in applying computational tools to study complex biological systems. These efforts have centered around developing reproducible research skills and applying modern data visualization techniques. An outgrowth of these efforts at the University of Michigan has been the institutionalization of The Carpentries organization on campus (https://carpentries.org), which specializes in peer-to-peer instruction of programming tools and techniques to foster better reproducibility and build a community of practitioners.

The Schloss lab uses computational tools to integrate multi-omics tools in a culture-independent approach to understand how bacteria interact with each other and their host to drive processes such as colorectal cancer and susceptibility to Clostridium difficile infections.

Victoria Morckel

By |

Dr. Morckel uses spatial and statistical methods to examine ways to improve quality of life for people living in shrinking, deindustrialized cities in the Midwestern United States. She is especially interested in the causes and consequences of population loss, including issues of vacancy, blight, and neighborhood change.

Suitability Analysis Results: Map of Potential Properties to Naturalize in the City of Flint, Michigan.

Raed Al Kontar

By |

My research broadly focuses on developing data analytics and decision-making methodologies specifically tailored for Internet of Things (IoT) enabled smart and connected products/systems. I envision that most (if not all) engineering systems will eventually become connected systems in the future. Therefore, my key focus is on developing next-generation data analytics, machine learning, individualized informatics and graphical and network modeling tools to truly realize the competitive advantages that are promised by smart and connected products/systems.


Ho-Joon Lee

By |

Dr. Lee’s research in data science concerns biological questions in systems biology and network medicine by developing algorithms and models through a combination of statistical/machine learning, information theory, and network theory applied to multi-dimensional large-scale data. His projects have covered genomics, transcriptomics, proteomics, and metabolomics from yeast to mouse to human for integrative analysis of regulatory networks on multiple molecular levels, which also incorporates large-scale public databases such as GO for functional annotation, PDB for molecular structures, and PubChem and LINCS for drugs or small compounds. He previously carried out proteomics and metabolomics along with a computational derivation of dynamic protein complexes for IL-3 activation and cell cycle in murine pro-B cells (Lee et al., Cell Reports 2017), for which he developed integrative analytical tools using diverse approaches from machine learning and network theory. His ongoing interests in methodology include machine/deep learning and topological Kolmogorov-Sinai entropy-based network theory, which are applied to (1) multi-level dynamic regulatory networks in immune response, cell cycle, and cancer metabolism and (2) mass spectrometry-based omics data analysis.

Figure 1. Proteomics and metabolomics analysis of IL-3 activation and cell cycle (Lee et al., Cell Reports 2017). (A) Multi-omics abundance profiles of proteins, modules/complexes, intracellular metabolites, and extracellular metabolites over one cell cycle (from left to right columns) in response to IL-3 activation. Red for proteins/modules/intracellular metabolites up-regulation or extracellular metabolites release; Green for proteins/modules/intracellular metabolites down-regulation or extracellular metabolites uptake. (B) Functional module network identified from integrative analysis. Red nodes are proteins and white nodes are functional modules. Expression profile plots are shown for literature-validated functional modules. (C) Overall pathway map of IL-3 activation and cell cycle phenotypes. (D) IL-3 activation and cell cycle as a cancer model along with candidate protein and metabolite biomarkers. (E) Protein co-expression scale-free network. (F) Power-low degree distribution of the network E. (G) Protein entropy distribution by topological Kolmogorov-Sinai entropy calculated for the network E.


Samuel K Handelman

By |

Samuel K Handelman, Ph.D., is Research Assistant Professor in the department of Internal Medicine, Gastroenterology, of Michigan Medicine at the University of Michigan, Ann Arbor. Prof. Handelman is focused on multi-omics approaches to drive precision/personalized-therapy and to predict population-level differences in the effectiveness of interventions. He tends to favor regression-style and hierarchical-clustering approaches, partially because he has a background in both statistics and in cladistics. His scientific monomania is for compensatory mechanisms and trade-offs in evolution, but he has a principled reason to focus on translational medicine: real understanding of these mechanisms goes all the way into the clinic. Anything less that clinical translation indicates that we don’t understand what drove the genetics of human populations.

Antonios M. Koumpias

By |

Antonios M. Koumpias, Ph.D., is Assistant Professor of Economics in the department of Social Sciences at the University of Michigan, Dearborn. Prof. Koumpias is an applied microeconomist with research interests in public economics, with an emphasis on behavioral tax compliance, and health economics. In his research, he employs quasi-experimental methods to disentangle the causal impact of policy interventions that occur at the aggregate (e.g. states) or the individual (e.g. taxpayers) level in a comparative case study setting. Namely, he relies on regression discontinuity designs, regression kink designs, matching methods, and synthetic control methods to perform program evaluation that estimates the causal treatment effect of the policy in question. Examples include the use of a regression discontinuity design to estimate the impact of a tax compliance reminders on payments of overdue income tax liabilities in Greece, matching methods to measure the influence of mass media campaigns in Pakistan on income tax filing and the synthetic control method to evaluate the long-term effect of state Medicaid expansions on mortality.

Evolution of Annual Changes in All-cause Childless Adult Mortality in New York State following 2001 State Medicaid Expansion

Romesh Saigal

By |

Professor Saigal has held faculty positions at the Haas School of Business, Berkeley and the department of Industrial Engineering and Management Sciences at Northwestern University, has been a researcher at the Bell Telephone Laboratories and numerous short term visiting positions. He currently teaches courses in Financial Engineering. In the recent past he taught courses in optimization, and Management Science. His current research involves data based studies of operational problems in the areas of Finance, Transportation, Renewable Energy and Healthcare, with an emphasis on the management and pricing of risks. This involves the use of data analytics, optimization, stochastic processes and financial engineering tools. His earlier research involved theoretical investigation into interior point methods, large scale optimization and software development for mathematical programming. He is an author of two books on optimization and large set of publications in top refereed journals. He has been an associate editor of Management Science and is a member of SIAM, AMS and AAAS. He has served as the Director of the interdisciplinary Financial Engineering Program and as the Director of Interdisciplinary Professional Programs (now Integrative Design + Systems) at the College of Engineering.

Peter Adriaens

By |

My research focus is on the development and application of machine learning tools to large scale financial and unstructured (textual) data to extract, quantify and predict risk profiles and investment grade rating of private and public companies.  Example datasets include social media and financial aggregators such as Bloomberg, Pitchbook, and Privco.