Gen Li

By |

Dr. Gen Li is an Assistant Professor in the Department of Biostatistics. He is devoted to developing new statistical methods for analyzing complex biomedical data, including multi-way tensor array data, multi-view data, and compositional data. His methodological research interests include dimension reduction, predictive modeling, association analysis, and functional data analysis. He also has research interests in scientific domains including microbiome and genomics.

Novel tree-guided regularization methods can identify important microbial features at different taxonomic ranks that are predictive of the clinical outcome.

Wenbo Sun

By |

Uncertainty quantification and decision making are increasingly demanded with the development of future technology in engineering and transportation systems. Among the uncertainty quantification problems, Dr. Wenbo Sun is particularly interested in statistical modelling of engineering system responses with considering the high dimensionality and complicated correlation structure, as well as quantifying the uncertainty from a variety of sources simultaneously, such as the inexactness of large-scale computer experiments, process variations, and measurement noises. He is also interested in data-driven decision making that is robust to the uncertainty. Specifically, he delivers methodologies for anomaly detection and system design optimization, which can be applied to manufacturing process monitoring, distracted driving detection, out-of-distribution object identification, vehicle safety design optimization, etc.

Mihaela (Miki) Banu

By |

In the area of multi-scale modeling of manufacturing processes: (a) Models for understanding the mechanisms of forming and joining of lightweight materials. This new understanding enables the development of advanced processes which remove limitations of current state-of-the-art capabilities that exhibit limited formability of high strength lightweight alloys, and limited reproducibility of joining quality; (b) Innovative multi-scale finite element models for ultrasonic welding of battery tabs (resulting in models adopted by GM for designing and manufacturing batteries for the Chevy Volt), and multi-scale models for ultrasonic welding of short carbon fiber composites (resulting in models adopted by GM for designing and manufacturing assemblies made of carbon fiber composites with metallic parts); (c) Data-driven algorithms of prediction geometrical and microstructural integrity of the incremental formed parts. Machine learning is used for developing fast and robust methods to be integrated into the designing process and replace finite element simulations.

Alex Gorodetsky

By |

Alex Gorodetsky’s research is at the intersection of applied mathematics, data science, and computational science, and is focused on enabling autonomous decision making under uncertainty. He is especially interested in controlling, designing, and analyzing autonomous systems that must act in complex environments where observational data and expensive computational simulations must work together to ensure objectives are achieved. Toward this goal, he pursues research in wide-ranging areas including uncertainty quantification, statistical inference, machine learning, control, and numerical analysis. His methodology is to increase scalability of probabilistic modeling and analysis techniques such as Bayesian inference and uncertainty quantification. His current strategies to achieving scalability revolve around leveraging computational optimal transport, developing tensor network learning algorithms, and creating new multi-fidelity information fusion approaches.

Sample workflow for enabling autonomous decision making under uncertainty for a drone operating in a complex environment. We develop algorithms to compress simulation data by exploiting problem structure. We then embed the compressed representations onto onboard computational resources. Finally, we develop approaches to enable the drone to adapt, learn, and refine knowledge by interacting with, and collecting data from, the environment.

Dominika Zgid

By |

Our work is interdisciplinary in nature and we connect three fields, chemistry, physics and materials science. Our goal is to develop theoretical tools that give access to directly experimentally relevant quantities. We develop and apply codes that describe two types of electronic motion (i) weakly correlated electrons originating from the delocalized “wave-like” s- and p-orbitals responsible for many electron correlation effects in molecules and solids that do not contain transition metal atoms (ii) strongly correlated electrons residing in the d- and f-orbitals that remain localized and behave “particle-like” responsible for many very interesting effects in the molecules containing d- and f-electrons (transition metal nano-particles used in catalysis, nano-devices with Kondo resonances and molecules of biological significance – active centers of metalloproteins). The mutual coupling of these two types of electronic motion is challenging to describe and currently only a few theories can properly account for both types of electronic correlation effects simultaneously.

Available research projects in the group involve (1) working on a new theory that is able to treat weakly and strongly correlated electrons in molecules with multiple transition metal centers with applications to molecular magnets and active centers of enzymes (2) developing a theory for weakly correlated electrons that is able to produce reliable values of band gaps in semiconductors and heterostructures used in solar cells industry (3) applying the QM/QM embedding theories developed in our group to catalysis on transition metal-oxide surfaces and (4) applying the embedding formalism to molecular conductance problems in order to include correlation effects.

Harm Derksen

By |

Current research includes a project funded by Toyota that uses Markov Models and Machine Learning to predict heart arrhythmia, an NSF-funded project to detect Acute Respiratory Distress Syndrome (ARDS) from x-ray images and projects using tensor analysis on health care data (funded by the Department of Defense and National Science Foundation).

Emanuel Gull

By |

Professor Gull works in the general area of computational condensed matter physics with a focus on the study of correlated electronic systems in and out of equilibrium. He is an expert on Monte Carlo methods for quantum systems and one of the developers of the diagrammatic ‘continuous-time’ quantum Monte Carlo methods. His recent work includes the study of the Hubbard model using large cluster dynamical mean field methods, the development of vertex function methods for optical (Raman and optical conductivity) probes, and the development of bold line diagrammatic algorithms for quantum impurities out of equilibrium. Professor Gull is involved in the development of open source computer programs for strongly correlated systems.

Quantum impurities are small confined quantum systems coupled to wide leads. An externally applied time-dependent magnetic field induces a change in the population of spins on the impurity, leading to time-dependent switching behavior. The system's equations of motion are determined by a many-body quantum field theory and solved using a diagrammatic Monte Carlo approach. The computations were performed at Columbia University and the University of Michigan.

Quantum impurities are small confined quantum systems coupled to wide leads. An externally applied time-dependent magnetic field induces a change in the population of spins on the impurity, leading to time-dependent switching behavior. The system’s equations of motion are determined by a many-body quantum field theory and solved using a diagrammatic Monte Carlo approach. The computations were performed at Columbia University and the University of Michigan.

Shravan Veerapaneni

By |

Dr. Veerapaneni’s research group develops fast and scalable algorithms for solving differential and integral equations on complex moving geometries. Application areas of current interest include large-scale simulations of blood flow through arbitrary confined geometries, electrohydrodynamics of soft particles and heat flow on time-varying domains.

shravanimage

Jieping Ye

By |

Jieping Ye, PhD, is Associate Professor of Computational Medicine and Bioinformatics in the Medical School at the University of Michigan, Ann Arbor.

The Ye Lab has been conducting fundamental research in machine learning and data mining, developing computational methods for biomedical data analysis, and building informatics software. We have developed novel machine learning algorithms for feature extraction from high-dimensional data, sparse learning, multi-task learning, transfer learning, active learning, multi-label classification, and matrix completion. We have developed the SLEP (Sparse Learning with Efficient Projections) package, which includes implementations of large-scale sparse learning models, and the MALSAR (Multi-tAsk Learning via StructurAl Regularization) package, which includes implementations of state-of-the-art multi-task learning models. SLEP achieves state-of-the-art performance for many sparse learning models, and it has become one of the most popular sparse learning software packages. With close collaboration with researchers at the biomedical field, we have successfully applied these methods for analyzing biomedical data, including clinical image data and genotype data.

Peter X. K. Song

By |

Dr. Song interested in the development and application of theories and methodologies from Data Science to solve scientific problems arising from medical and public health sciences, in particular from the fields of environmental health sciences and nutritional sciences. People from his lab are strongly interested in interdisciplinary research in the areas of statistics, operation research, and machine learning, with the core interest in the statistical foundation of big data analytics, and with target applications in processing and analyzing big data from various applied sciences, including asthma, environmental health sciences, nephrology, and nutritional sciences. His research projects have been funded by NIH, NSF and DARPA funding agencies. Visit Song Lab webpage for detail: http://www.umich.edu/~songlab/