Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021

 

Jodyn Platt

By |

Our team leads research on the Ethical, Legal, and Social Implications (ELSI) of learning health systems and related enterprises. Our research uses mixed methods to understand policies and practices that make data science methods (data collection and curation, AI, computable algorithms) trustworthy for patients, providers, and the public. Our work engages multiple stakeholders including providers and health systems, as well as the general public and minoritized communities on issues such as AI-enabled clinical decision support, data sharing and privacy, and consent for data use in precision oncology.

Carina Gronlund

By |

As an environmental epidemiologist and in collaboration with government and community partners, I study how social, economic, health, and built environment characteristics and/or air quality affect vulnerability to extreme heat and extreme precipitation. This research will help cities understand how to adapt to heat, heat waves, higher pollen levels, and heavy rainfall in a changing climate.

Allyson Flaster

By |

I manage research activities for the College and Beyond II study at ICPSR, including survey development and data infrastructure planning. My research broadly focuses on issues of postsecondary access and success for undergraduate and graduate students and uses quantitative methodologies.

Xu Shi

By |

My methodological research focus on developing statistical methods for routinely collected healthcare databases such as electronic health records (EHR) and claims data. I aim to tackle the unique challenges that arise from the secondary use of real-world data for research purposes. Specifically, I develop novel causal inference methods and semiparametric efficiency theory that harness the full potential of EHR data to address comparative effectiveness and safety questions. I develop scalable and automated pipelines for curation and harmonization of EHR data across healthcare systems and coding systems.

Jeffrey Morenoff

By |

Jeffrey D. Morenoff is a professor of sociology, a research professor at the Institute for Social Research (ISR), and a professor of public policy at the Ford School. He is also director of the ISR Population Studies Center. Professor Morenoff’s research interests include neighborhood environments, inequality, crime and criminal justice, the social determinants of health, racial/ethnic/immigrant disparities in health and antisocial behavior, and methods for analyzing multilevel and spatial data.

Jana Hirschtick

By |

I am a social epidemiologist with expertise in data collection, analysis, and translation. My research is focused on quantifying health inequities at the individual, community, and national level and examining how policy and social factors impact these inequities. My experience has spanned academic, clinical, and community settings, providing me with a unique perspective on the value and need for epidemiologic research and dissemination in multiple contexts. My current work focuses on the health equity impact of tobacco product use as part of the University of Michigan Tobacco Center of Regulatory Science, the Center for the Assessment of Tobacco Regulations (CAsToR). I am examining sociodemographic inequities in polytobacco use (the use of multiple tobacco products) across multiple nationally representative datasets. I am also an active member of CAsToR’s Data Analysis and Dissemination (DAD) Core. Additionally, I am collaborating with colleagues in Chicago to disseminate findings from a community-level probability survey of 10 Chicago communities, of which I served as Co-PI while working at a hospital system in Chicago. We continue to publish on the unique survey process, sharing our community-driven approach to conducting research and disseminating findings in partnership with surveyed communities.

Nancy Fleischer

By |

Dr. Fleischer’s research focuses on how the broader socioeconomic and policy environments impact health disparities and the health of vulnerable populations, in the U.S. and around the world. Through this research, her group employs various analytic techniques to examine data at multiple levels (country-level, state-level, and neighborhood-level), emphasizing the role of structural influences on individual health. Her group applies advanced epidemiologic, statistical, and econometric methods to this research, including survey methodology, longitudinal data analysis, hierarchical modeling, causal inference, systems science, and difference-in-difference analysis. Dr. Fleischer leads two NCI-funded projects focused on the impact of tobacco control policies on health equity in the U.S.

Joshua P Newell

By |

I work in the area of urban sustainability, with research questions at multiple scales and environmental and socio-economic systems. My work uses spatial analysis (esp. GIS and remote sensing) and mass-balance accounting (life cycle assessment, material flow analysis). My lab is starting to use big data from a range of sources (Zillow, Twitter, etc) and I am interested in collaborating with data sciences of various stripes on sustainability and equity challenges.

Xiaoling Xiang

By |

Xiaoling Xiang conducts community-based services research concerning the physical and mental health and service use of diverse older populations. She is particularly interested in psychosocial approaches to promoting mental health and enhancing the quality of life in older adults. Her other areas of research include the epidemiology of mental disorders in late life, comorbidity, quality of home and community-based services, and implementation of evidence-based interventions. She uses a variety of applied statistical methods in the analysis of data from national surveys, electronic medical records, insurance claims.