Matthew VanEseltine

By |

Dr. VanEseltine is a sociologist and data scientist working with large-scale administrative data for causal and policy analysis. His interests include studying the effects of scientific infrastructure, training, and initiatives, as well as the development of open, sustainable, and replicable systems for data construction, curation, and dissemination. As part of the Institute for Research on Innovation and Science (IRIS), he contributes to record linkage and data improvements in the research community releases of UMETRICS, a data system built from integrated records on federal award funding and spending from dozens of American universities. Dr. VanEseltine’s recent work includes studying the impacts of COVID-19 on academic research activity.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021


Carina Gronlund

By |

As an environmental epidemiologist and in collaboration with government and community partners, I study how social, economic, health, and built environment characteristics and/or air quality affect vulnerability to extreme heat and extreme precipitation. This research will help cities understand how to adapt to heat, heat waves, higher pollen levels, and heavy rainfall in a changing climate.

Sardar Ansari

By |

I build data science tools to address challenges in medicine and clinical care. Specifically, I apply signal processing, image processing and machine learning techniques, including deep convolutional and recurrent neural networks and natural language processing, to aid diagnosis, prognosis and treatment of patients with acute and chronic conditions. In addition, I conduct research on novel approaches to represent clinical data and combine supervised and unsupervised methods to improve model performance and reduce the labeling burden. Another active area of my research is design, implementation and utilization of novel wearable devices for non-invasive patient monitoring in hospital and at home. This includes integration of the information that is measured by wearables with the data available in the electronic health records, including medical codes, waveforms and images, among others. Another area of my research involves linear, non-linear and discrete optimization and queuing theory to build new solutions for healthcare logistic planning, including stochastic approximation methods to model complex systems such as dispatch policies for emergency systems with multi-server dispatches, variable server load, multiple priority levels, etc.

Kevin Bakker

By |

Kevin’s research is focused on to identifying and interpreting the mechanisms responsible for the complex dynamics we observe in ecological and epidemiological systems using data science and modeling approaches. He is primarily interested in emerging and endemic pathogens, such as SARS-CoV-2, influenza, vampire bat rabies, and a host of childhood infectious diseases such as chickenpox. He uses statistical and mechanistic models to fit, forecast, and occasionally back-cast expected disease dynamics under a host of conditions, such as vaccination or other control mechanisms.

Niko Kaciroti

By |

Niko Kaciroti is a Research Scientist at the Departments of Pediatrics and Biostatistics. He received his PhD in Biostatistics from the University of Michigan. Since then he has collaborated in multidisciplinary research at the University of Michigan and with researchers from other universities in the United States and internationally. Dr. Kaciroti is a faculty member at the Center for Computational Medicine and Bioinformatics. His main research interest is in using Bayesian models for analyzing longitudinal data from clinical trials with missing values, as well as using Bayesian methods for nonlinear and dynamic models. Dr. Kaciroti is an elected member of the International Statistical Institute and serves as statistical editor for the American Journal of Preventive Medicine and the International Journal of Behavior Nutrition and Physical Activity.

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.

Joyce Penner

By |

I am new to researching in Artificial Intelligence used in Atmospheric Sciences. Previous experience is in comparing satellite data products with 3-D global simulations.

Andrew Brouwer

By |

Andrew uses mathematical and statistical modeling to address public health problems. As a mathematical epidemiologist, he works on a wide range of topics (mostly related to infectious diseases and cancer prevention and survival) using an array of computational and statistical tools, including mechanistic differential equations and multistate stochastic processes. Rigorous consideration of parameter identifiability, parameter estimation, and uncertainty quantification are underlying themes in Andrew’s work.