Lucia Cevidanes

By |

We have developed and tested machine learning approaches to integrate quantitative markers for diagnosis and assessment of progression of TMJ OA, as well as extended the capabilities of 3D Slicer4 into web-based tools and disseminated open source image analysis tools. Our aims use data processing and in-depth analytics combined with learning using privileged information, integrated feature selection, and testing the performance of longitudinal risk predictors. Our long term goals are to improve diagnosis and risk prediction of TemporoMandibular Osteoarthritis in future multicenter studies.

The Spectrum of Data Science for Diagnosis of Osteoarthritis of the Temporomandibular Joint

Nicholas Douville

By |

Dr. Douville is a critical care anesthesiologist with an investigative background in bioinformatics and perioperative outcomes research. He studies techniques for utilizing health care data, including genotype, to deliver personalized medicine in the perioperative period and intensive care unit. His research background has focused on ways technology can assist health care delivery to improve patient outcomes. This began designing microfluidic chips capable of recreating fluid mechanics of atelectatic alveoli and monitoring the resulting barrier breakdown real-time. His interest in bioinformatics was sparked when he observed how methodology designed for tissue engineering could be modified to the nano-scale to enable genomic analysis. Additionally, his engineering training provided the framework to apply data-driven modeling techniques, such as finite element analysis, to complex biological systems.

Ya’acov Ritov

By |

My main interest is theoretical statistics as implied to complex model from semiparametric to ultra high dimensional regression analysis. In particular the negative aspects of Bayesian and causal analysis as implemented in modern statistics.

An analysis of the position of SCOTUS judges.

Robert Ziff

By |

I study the percolation model, which is the model for long-range connectivity formation in systems that include polymerization, flow in porous media, cell-phone signals, and the spread of diseases. I study this on random graphs and other networks, and on regular lattices in various dimensions, using computer simulation and analysis. We have also worked on developing new algorithms. I am currently applying these methods to studying the COVID-19 pandemic, which also requires comparison with some of the vast amount of data that is available from every part of the world.

 

Jana Hirschtick

By |

I am a social epidemiologist with expertise in data collection, analysis, and translation. My research is focused on quantifying health inequities at the individual, community, and national level and examining how policy and social factors impact these inequities. My experience has spanned academic, clinical, and community settings, providing me with a unique perspective on the value and need for epidemiologic research and dissemination in multiple contexts. My current work focuses on the health equity impact of tobacco product use as part of the University of Michigan Tobacco Center of Regulatory Science, the Center for the Assessment of Tobacco Regulations (CAsToR). I am examining sociodemographic inequities in polytobacco use (the use of multiple tobacco products) across multiple nationally representative datasets. I am also an active member of CAsToR’s Data Analysis and Dissemination (DAD) Core. Additionally, I am collaborating with colleagues in Chicago to disseminate findings from a community-level probability survey of 10 Chicago communities, of which I served as Co-PI while working at a hospital system in Chicago. We continue to publish on the unique survey process, sharing our community-driven approach to conducting research and disseminating findings in partnership with surveyed communities.

Nancy Fleischer

By |

Dr. Fleischer’s research focuses on how the broader socioeconomic and policy environments impact health disparities and the health of vulnerable populations, in the U.S. and around the world. Through this research, her group employs various analytic techniques to examine data at multiple levels (country-level, state-level, and neighborhood-level), emphasizing the role of structural influences on individual health. Her group applies advanced epidemiologic, statistical, and econometric methods to this research, including survey methodology, longitudinal data analysis, hierarchical modeling, causal inference, systems science, and difference-in-difference analysis. Dr. Fleischer leads two NCI-funded projects focused on the impact of tobacco control policies on health equity in the U.S.

Deanna Isaman

By |

My applied research focuses on simulation models of the progression of multiple chronic complications and comorbidities of diabetes and its precursors. I study the effectiveness and cost-effectiveness of early interventions in the progression of diabetes. My methodological research synthesizes secondary data from complementary studies to model complex processes.

Walter Dempsey

By |

Dr. Dempsey’s research focuses on statistical methods for digital and mobile health. My current work involves three complementary research themes: (1) experimental design and data analytic methods to inform multi-stage decision making in health; (2) statistical modeling of complex longitudinal and survival data; and (3) statistical modeling of complex relational structures such as interaction networks. Current directions include (1) integration of sequential multiple assignment randomized trials (SMARTs) and micro-randomized trials (MRTs) and associated causal inference methods; (2) recurrent event analysis in the presence of high-frequency sensor data; and (3) temporal models for, community detection of, and link prediction using complex interaction data.

Robert Ploutz-Snyder

By |

My work falls into three general application areas. I am an applied (accredited) biostatistician with a strong team science motivation and I collaborate with scientists in primarily the biomedical sciences, contributing expertise in experimental design, statistical analysis/modeling, and data visualization. I have held faculty appointments in Schools of Medicine and Nursing, and also worked as a senior scientist in the Human Research Program at the NASA Johnson Space Center. I currently direct an Applied Biostatistics Laboratory and Data Management Core within the UM School of Nursing, and maintain several collaborative research programs within the School, at NASA, and with collaborators elsewhere.

Andrew Krumm

By |

My research examines the ways in which individuals and organizations use data to improve. Quality improvement and data-intensive research approaches are central to my work along with forming equitable collaborations between researchers and frontline workers. Prior to joining the Department of Learning Health Sciences, I was the Director of Learning Analytics Research at Digital Promise and a Senior Education Researcher in the Center for Technology in Learning at SRI International. At both organizations, I developed data-intensive research-practice partnerships with educational organizations of all types. As a learning scientist working at the intersection of data-intensive research and quality improvement, my colleagues and I have developed tools and strategies (e.g., cloud-based, open source tools for engaging in collaborative exploratory data analyses) that partnerships between researchers and practitioners can use to measure learning and improve learning environments.

This is an image that my colleagues and I, over multiple projects, developed to communicate the multiple steps involved in collaborative data-intensive improvement. The “organize” and “understand” phases are about asking the right questions before the work of data analysis begins: “co-develop” and “test” are about taking action following an analysis. Along with identifying common phases, we have also observed the importance of the following supporting conditions: a trusting partnership, the use of formal improvement methods, common data workflows, and intentional efforts to support the learning of everyone involved in the project.