Jim Omartian

By |

My research explores the interplay between corporate decisions and employee actions. I currently use anonymized mobile device data to observe individual behaviors, and employ both unsupervised and supervised machine learning techniques.

Jeffrey Morenoff

By |

Jeffrey D. Morenoff is a professor of sociology, a research professor at the Institute for Social Research (ISR), and a professor of public policy at the Ford School. He is also director of the ISR Population Studies Center. Professor Morenoff’s research interests include neighborhood environments, inequality, crime and criminal justice, the social determinants of health, racial/ethnic/immigrant disparities in health and antisocial behavior, and methods for analyzing multilevel and spatial data.

Jana Hirschtick

By |

I am a social epidemiologist with expertise in data collection, analysis, and translation. My research is focused on quantifying health inequities at the individual, community, and national level and examining how policy and social factors impact these inequities. My experience has spanned academic, clinical, and community settings, providing me with a unique perspective on the value and need for epidemiologic research and dissemination in multiple contexts. My current work focuses on the health equity impact of tobacco product use as part of the University of Michigan Tobacco Center of Regulatory Science, the Center for the Assessment of Tobacco Regulations (CAsToR). I am examining sociodemographic inequities in polytobacco use (the use of multiple tobacco products) across multiple nationally representative datasets. I am also an active member of CAsToR’s Data Analysis and Dissemination (DAD) Core. Additionally, I am collaborating with colleagues in Chicago to disseminate findings from a community-level probability survey of 10 Chicago communities, of which I served as Co-PI while working at a hospital system in Chicago. We continue to publish on the unique survey process, sharing our community-driven approach to conducting research and disseminating findings in partnership with surveyed communities.

Andrew J. Admon, MD, MPH, MSc

By |

I am a pulmonary and critical care physician who is passionate about improving critical care delivery by applying advanced methods for causal inference to observational data. My prior work has leveraged real-world data clinical and administrative data to study the epidemiology of critical illness, the organization of critical care, and health care financing.

My current work leverages real-world clinical data to understand whether and how care team fragmentation (transitions of physicians and other providers while a patient is still hospitalized) influences clinical outcomes like survival and recovery. Answering these questions correctly requires methods that are attentive to the complex causal structure underlying the relationship, depicted here. It features time-varying exposures (A), confounders (L), and mediators (M), all of which can influence clinical outcomes (Y). Arrows in the figure identify directional (i.e., causal) relationships between variables.

Nancy Fleischer

By |

Dr. Fleischer’s research focuses on how the broader socioeconomic and policy environments impact health disparities and the health of vulnerable populations, in the U.S. and around the world. Through this research, her group employs various analytic techniques to examine data at multiple levels (country-level, state-level, and neighborhood-level), emphasizing the role of structural influences on individual health. Her group applies advanced epidemiologic, statistical, and econometric methods to this research, including survey methodology, longitudinal data analysis, hierarchical modeling, causal inference, systems science, and difference-in-difference analysis. Dr. Fleischer leads two NCI-funded projects focused on the impact of tobacco control policies on health equity in the U.S.

Robert Ploutz-Snyder

By |

My work falls into three general application areas. I am an applied (accredited) biostatistician with a strong team science motivation and I collaborate with scientists in primarily the biomedical sciences, contributing expertise in experimental design, statistical analysis/modeling, and data visualization. I have held faculty appointments in Schools of Medicine and Nursing, and also worked as a senior scientist in the Human Research Program at the NASA Johnson Space Center. I currently direct an Applied Biostatistics Laboratory and Data Management Core within the UM School of Nursing, and maintain several collaborative research programs within the School, at NASA, and with collaborators elsewhere.

Andrew Krumm

By |

My research examines the ways in which individuals and organizations use data to improve. Quality improvement and data-intensive research approaches are central to my work along with forming equitable collaborations between researchers and frontline workers. Prior to joining the Department of Learning Health Sciences, I was the Director of Learning Analytics Research at Digital Promise and a Senior Education Researcher in the Center for Technology in Learning at SRI International. At both organizations, I developed data-intensive research-practice partnerships with educational organizations of all types. As a learning scientist working at the intersection of data-intensive research and quality improvement, my colleagues and I have developed tools and strategies (e.g., cloud-based, open source tools for engaging in collaborative exploratory data analyses) that partnerships between researchers and practitioners can use to measure learning and improve learning environments.

This is an image that my colleagues and I, over multiple projects, developed to communicate the multiple steps involved in collaborative data-intensive improvement. The “organize” and “understand” phases are about asking the right questions before the work of data analysis begins: “co-develop” and “test” are about taking action following an analysis. Along with identifying common phases, we have also observed the importance of the following supporting conditions: a trusting partnership, the use of formal improvement methods, common data workflows, and intentional efforts to support the learning of everyone involved in the project.

Inbal (Billie) Nahum-Shani

By |

Inbal (Billie) Nahum-Shani is a Research Associate Professor in the Institute for Social Research, and a founding member of the Data-science for Dynamic Decision-making lab (d3lab) at the University of Michigan. Her research focuses on conceptual and methodological issues pertaining to the construction of effective Adaptive Interventions — a treatment design in which ongoing information from the person is used to individualize the type/dose/modality of support (or treatment); and Just-In-Time Adaptive Interventions (JITAIs) — a special form of adaptive interventions in which mobile devices are used to provide support in a timely and ecological manner.

Kean Ming Tan

By |

I am an applied statistician working on statistical machine learning methods for analyzing complex biomedical data sets. I develop multivariate statistical methods such as probabilistic graphical models, cluster analysis, discriminant analysis, and dimension reduction to uncover patterns from massive data set. Recently, I also work on topics related to robust statistics, non-convex optimization, and data integration from multiple sources.

Aditi Misra

By |

Transportation is the backbone of the urban mobility system and is one of the greatest sources of environmental emissions and pollutions. Making urban transportation efficient, equitable and sustainable is the main focus of my research. My students and I analyze small scale survey data as well as large scale spatiotemporal data to identify travel behavior trends and patterns at a disaggregate level using econometric methods, which we then scale up to the population level through predictive and statistical modeling. We also design our own data collection methods and instruments, be it a network of smart devices or stated preference experiments. Our expertise lies in identifying latent constructs that influence decisions and choices, which in turn dictate demands on the systems and subsystems. We use our expertise to design incentives and policy suggestions that can help promote sustainable and equitable multimodal transportation systems. Our team also uses data analytics, particularly classification and pattern recognition algorithms, to analyze crash context data and develop safety-critical scenarios for automated and connected vehicle (CAV) deployment. We have developed an online game based on such scenarios to promote safe shared mobility among teenagers and young adults and plan to expand research in that area. We are also currently expanding our research to explore the use of NN in context information synthesis.

This is a project where we used classification and Bayesian models to identify scenarios that are risky for pedestrians and bicyclists. We then developed an online game based on those scenarios for middle schoolers so that they are better prepared for shared road conflicts.