Explore ARCExplore ARC

Christopher E. Gillies

By |

I am Research Faculty with the Michigan Center for Integrative Research in Critical Care (MCIRCC). Our team builds predictive algorithms, analyzes signals, and implements statistical models to advance Critical Care Medicine. We use electronic healthcare record data to build predictive algorithms. One example of this is Predicting Intensive Care Transfers and other Unforeseen Events (PICTURE), which uses commonly collected vital signs and labs to predict patient deterioration on the general hospital floor. Additionally, our team collects waveforms from the University Hospital, and we store this data utilizing Amazon Web Services. We use these signals to build predictive algorithms to advance precision medicine. Our flagship algorithm called Analytic for Hemodynamic Instability (AHI), predicts patient deterioration using a single-lead electrocardiogram signal. We use Bayesian methods to analyze metabolomic biomarker data from blood and exhaled breath to understand Sepsis and Acute Respiratory Distress Syndrome. I also have an interest in statistical genetics.

Jeffrey Regier

By |

Jeffrey Regier received a PhD in statistics from UC Berkeley (2016) and joined the University of Michigan as an assistant professor. His research interests include graphical models, Bayesian inference, high-performance computing, deep learning, astronomy, and genomics.

Mark P Van Oyen

By |

Efficient, low regret contextual multi-armed bandit approaches for real time learning including Thompson sampling, UCB, and knowledge gradient descent. Integration of optimization and predictive analytics for determining the time to next measurement, which modality to use, and the optimal control of risk factors to manage chronic disease. Integration of soft voting ensemble classifiers and multiple models Kalman filters for disease state prediction, Real-time (online) contextual multi-armed bandits integrated with optimization of hospital bed type dynamic control decisions for reducing 30-day readmission rates in hospitals. Robustness in system optimization when the system model is uncertain with emphasis on quantile regression forests, sample average approximation, robust optimization and distributionally robust optimization. Health care delivery systems models with prediction and control for inpatient and outpatient. Work has been done on Emergency Department redesign for improved patient flow; Capacity management and planning and scheduling for outpatient care, including integrated services networks; admission control with machine learning to ICUs, stepdown, and regular care units Surgical planning and scheduling for access delay control; Planning and scheduling for Clinical Research Units.

Machine learning, system modeling, and stochastic control can be used to slow the rate of glaucoma progression based on treatment aggressiveness options selected jointly with the patient.

Aaron A. King

By |

The long temporal and large spatial scales of ecological systems make controlled experimentation difficult and the amassing of informative data challenging and expensive. The resulting sparsity and noise are major impediments to scientific progress in ecology, which therefore depends on efficient use of data. In this context, it has in recent years been recognized that the onetime playthings of theoretical ecologists, mathematical models of ecological processes, are no longer exclusively the stuff of thought experiments, but have great utility in the context of causal inference. Specifically, because they embody scientific questions about ecological processes in sharpest form—making precise, quantitative, testable predictions—the rigorous confrontation of process-based models with data accelerates the development of ecological understanding. This is the central premise of my research program and the common thread of the work that goes on in my laboratory.

Jason Goldstick

By |

I am a statistician and my research focuses on applied public health work in a variety of fields specific to injury prevention, including substance use, violence, motor vehicle crash, and traumatic brain injury. Within those applications, I apply analytic methods for longitudinal data analysis, spatial and spatio-temporal data analysis, and predictive modeling (e.g., for clinical prediction of future injury risk applied to injuries like stroke, Benzodiazepine overdose, and firearm injury). I am also MPI of the System for Opioid Overdose Surveillance–a near-real-time system for monitoring fatal and nonfatal overdoses in Michigan; the system generates automated spatial and temporal summaries of recent overdose trends.

Gongjun Xu

By |

Dr. Gongjun Xu is an assistant professor in the Department of Statistics at the University of Michigan. Dr. Xu’s research interests include latent variable models, psychometrics, cognitive diagnosis modeling, high-dimensional statistics, and semiparametric statistics.

Harm Derksen

By |

Current research includes a project funded by Toyota that uses Markov Models and Machine Learning to predict heart arrhythmia, an NSF-funded project to detect Acute Respiratory Distress Syndrome (ARDS) from x-ray images and projects using tensor analysis on health care data (funded by the Department of Defense and National Science Foundation).

Hyun Min Kang

By |

Hyun Min Kang is an Associate Professor in the Department of Biostatistics. He received his Ph.D. in Computer Science from University of California, San Diego in 2009 and joined the University of Michigan faculty in the same year. Prior to his doctoral studies, he worked as a research fellow at the Genome Research Center for Diabetes and Endocrine Disease in the Seoul National University Hospital for a year and a half, after completing his Bachelors and Masters degree in Electrical Engineering at Seoul National University. His research interest lies in big data genome science. Methodologically, his primary focus is on developing statistical methods and computational tools for large-scale genetic studies. Scientifically, his research aims to understand the etiology of complex disease traits, including type 2 diabetes, bipolar disorder, cardiovascular diseases, and glomerular diseases.

Veera Baladandayuthapani

By |

Dr. Veera Baladandayuthapani is currently a Professor in the Department of Biostatistics at University of Michigan (UM), where he is also the Associate Director of the Center for Cancer Biostatistics. He joined UM in Fall 2018 after spending 13 years in the Department of Biostatistics at University of Texas MD Anderson Cancer Center, Houston, Texas, where was a Professor and Institute Faculty Scholar and held adjunct appointments at Rice University, Texas A&M University and UT School of Public Health. His research interests are mainly in high-dimensional data modeling and Bayesian inference. This includes functional data analyses, Bayesian graphical models, Bayesian semi-/non-parametric models and Bayesian machine learning. These methods are motivated by large and complex datasets (a.k.a. Big Data) such as high-throughput genomics, epigenomics, transcriptomics and proteomics as well as high-resolution neuro- and cancer- imaging. His work has been published in top statistical/biostatistical/bioinformatics and biomedical/oncology journals. He has also co-authored a book on Bayesian analysis of gene expression data. He currently holds multiple PI-level grants from NIH and NSF to develop innovative and advanced biostatistical and bioinformatics methods for big datasets in oncology. He has also served as the Director of the Biostatistics and Bioinformatics Cores for the Specialized Programs of Research Excellence (SPOREs) in Multiple Myeloma and Lung Cancer and Biostatistics&Bioinformatics platform leader for the Myeloma and Melanoma Moonshot Programs at MD Anderson. He is a fellow of the American Statistical Association and an elected member of the International Statistical Institute. He currently serves as an Associate Editor for Journal of American Statistical Association, Biometrics and Sankhya.

 

An example of horizontal (across cancers) and vertical (across multiple molecular platforms) data integration. Image from Ha et al (Nature Scientific Reports, 2018; https://www.nature.com/articles/s41598-018-32682-x)