Marie O’Neill

By |

My research interests include health effects of air pollution, temperature extremes and climate change (mortality, asthma, hospital admissions, birth outcomes and cardiovascular endpoints); environmental exposure assessment; and socio-economic influences on health.
Data science tools and methodologies include geographic information systems and spatio-temporal analysis, epidemiologic study design and data management.

Carina Gronlund

By |

As an environmental epidemiologist and in collaboration with government and community partners, I study how social, economic, health, and built environment characteristics and/or air quality affect vulnerability to extreme heat and extreme precipitation. This research will help cities understand how to adapt to heat, heat waves, higher pollen levels, and heavy rainfall in a changing climate.

Ken Kollman

By |

I have been involved in the building of data infrastructure in the study of elections, political systems, violence, geospatial units, demographics, and topography. This infrastructure will eventually lead to the integration of data across many domains in the social, health, population, and behavioral sciences. My core research interests are in elections and political organizations.

Jesse Hamilton

By |

My research focuses on the development of novel Magnetic Resonance Imaging (MRI) technology for imaging the heart. We focus in particular on quantitative imaging techniques, in which the signal intensity at each pixel in an image represents a measurement of an inherent property of a tissue. Much of our research is based on cardiac Magnetic Resonance Fingerprinting (MRF), which is a class of methods for simultaneously measuring multiple tissue properties from one rapid acquisition.

Our group is exploring novel ways to combine physics-based modeling of MRI scans with deep learning algorithms for several purposes. First, we are exploring the use of deep learning to design quantitative MRI scans with improved accuracy and precision. Second, we are developing deep learning approaches for image reconstruction that will allow us to reduce image noise, improve spatial resolution and volumetric coverage, and enable highly accelerated acquisitions to shorten scan times. Third, we are exploring ways of using artificial intelligence to derive physiological motion signals directly from MRI data to enable continuous scanning that is robust to cardiac and breathing motion. In general, we focus on algorithms that are either self-supervised or use training data generated in computer simulations, since the collection of large amounts of training data from human subjects is often impractical when designing novel imaging methods.

Bogdan I. Epureanu

By |

• Computational dynamics focused on nonlinear dynamics and finite elements (e.g., a new approach for forecasting bifurcations/tipping points in aeroelastic and ecological systems, new finite element methods for thin walled beams that leads to novel reduced order models).
• Modeling nonlinear phenomena and mechano-chemical processes in molecular motor dynamics, such as motor proteins, toward early detection of neurodegenerative diseases.
• Computational methods for robotics, manufacturing, modeling multi-body dynamics, developed methods for identifying limit cycle oscillations in large-dimensional (fluid) systems.
• Turbomachinery and aeroelasticity providing a better understanding of fundamental complex fluid dynamics and cutting-edge models for predicting, identifying and characterizing the response of blisks and flade systems through integrated experimental & computational approaches.
• Structural health monitoring & sensing providing increased sensibility / capabilities by the discovery, characterization and exploitation of sensitivity vector fields, smart system interrogation through nonlinear feedback excitation, nonlinear minimal rank perturbation and system augmentation, pattern recognition for attractors, damage detection using bifurcation morphing.

Tayo Fabusuyi

By |

Tayo Fabusuyi is an assistant research scientist in the Human Factors Group at UMTRI. His research interests are in Urban Systems and Operations Research, specifically designing and implementing initiatives that support sustainable and resilient communities with a focus on efficiency and equity issues. Drawing on both quantitative and qualitative data, his research develops and applies hard and soft Operations Research methods to urban systems issues in a manner that emphasizes theory driven solutions with demonstrated value-added. A central theme of his research activities is the use of demand side interventions, via information and pricing strategies in influencing the public’s travel behavior with the objective of achieving more beneficial societal outcomes. Informed by the proliferation of big data and the influence of transportation in the urban sphere, these research activities are categorized broadly into three overlapping and interdependent areas – intelligent transportation systems (ITS), emerging mobility services and urban futures. Before joining the research faculty at UMTRI, Dr. Fabusuyi was a Planning Economist at the African Development Bank and an adjunct Economics faculty member at Carnegie Mellon University, where he received his Ph.D. in Engineering and Public Policy.

Lana Garmire

By |

My research interest lies in applying data science for actionable transformation of human health from the bench to bedside. Current research focus areas include cutting edge single-cell sequencing informatics and genomics; precision medicine through integration of multi-omics data types; novel modeling and computational methods for biomarker research; public health genomics. I apply my biomedical informatics and analytical expertise to study diseases such as cancers, as well the impact of pregnancy/early life complications on later life diseases.

Arpan Kusari

By |

Dr. Arpan Kusari has joined UMTRI as an Assistant Research Scientist, a position where he will bring his cutting-edge industry experience. Dr. Kusari has spent five years at Ford Motor Company researching exclusively on making autonomous vehicles safe and viable, working collaboratively with researchers from MIT and University of Michigan to advance the state-of-the-art knowledge in autonomous vehicles. His research interest spans through the spheres of sensing and perception; and decision-making and control, in the domain of autonomous vehicles. In the sensing and perception realm, his interests lie in uncertainty quantification and fault tolerance of a generic sensor suite. Dr. Kusari is also interested in utilizing noise reduction methods for designing cost-effective low SNR (signal-to-noise ratio) LiDARS. In decision making and control, he is focused on creating a robust framework capable of handling the uncertainty stemming from other road users’ behavior. In that regard, Dr. Kusari is pursuing development of methods for increasing the efficiency and robustness of probabilistic formalisms such as reinforcement learning and evolutionary algorithms to safely navigate the dynamic environment. His doctoral research was in LiDAR mapping in the areas of sensor calibration, precise estimation of earthquake displacement and uncertainty quantification in the point cloud.

Anthony Vanky

By |

Anthony Vanky develops and applies data science and computational methods to design, plan, evaluate cities, emphasizing their applications to urban planning and design. Broadly, his work focuses on the domains of transportation and human mobility; social behaviors and urban space; policy evaluation; quantitative social sciences; and the evaluation of urban form. Through this work, he has extensively collaborated with public and private partners. In addition, he considers creative approaches toward data visualization, public engagement and advocacy, and research methods.


Anthony Vanky’s Cityways project analyzed 2.2 million trips from 135,000 people over one year to understand the factors that influence outdoor pedestrian path choice. Factors considered included weather, urban morphology, businesses, topography, traffic, the presence of green spaces, among others.


View Faculty Research Pitch, Fall 2021

Zhongming Liu

By |

My research is at the intersection of neuroscience and artificial intelligence. My group uses neuroscience or brain-inspired principles to design models and algorithms for computer vision and language processing. In turn, we uses neural network models to test hypotheses in neuroscience and explain or predict human perception and behaviors. My group also develops and uses machine learning algorithms to improve the acquisition and analysis of medical images, including functional magnetic resonance imaging of the brain and magnetic resonance imaging of the gut.

We use brain-inspired neural networks models to predict and decode brain activity in humans processing information from naturalistic audiovisual stimuli.