Explore ARCExplore ARC

Raed Al Kontar

By |

My research broadly focuses on developing data analytics and decision-making methodologies specifically tailored for Internet of Things (IoT) enabled smart and connected products/systems. I envision that most (if not all) engineering systems will eventually become connected systems in the future. Therefore, my key focus is on developing next-generation data analytics, machine learning, individualized informatics and graphical and network modeling tools to truly realize the competitive advantages that are promised by smart and connected products/systems.

 

Jason Corso

By |

The Corso group’s main research thrust is high-level computer vision and its relationship to human language, robotics and data science. They primarily focus on problems in video understanding such as video segmentation, activity recognition, and video-to-text; methodology, models leveraging cross-model cues to learn structured embeddings from large-scale data sources as well as graphical models emphasizing structured prediction over large-scale data sources are their emphasis. From biomedicine to recreational video, imaging data is ubiquitous. Yet, imaging scientists and intelligence analysts are without an adequate language and set of tools to fully tap the information-rich image and video. His group works to provide such a language.¬† His long-term goal is a comprehensive and robust methodology of automatically mining, quantifying, and generalizing information in large sets of projective and volumetric images and video to facilitate intelligent computational and robotic agents that can natural interact with humans and within the natural world.

Relating visual content to natural language requires models at multiple scales and emphases; here we model low-level visual content, high-level ontological information, and these two are glued together with an adaptive graphical structure at the mid-level.

Relating visual content to natural language requires models at multiple scales and emphases; here we model low-level visual content, high-level ontological information, and these two are glued together with an adaptive graphical structure at the mid-level.

Elizaveta Levina

By |

Elizaveta (Liza) Levina and her group work on various questions arising in the statistical analysis of large and complex data, especially networks and graphs. Our current focus is on developing rigorous and computationally efficient statistical inference on realistic models for networks. Current directions include community detection problems in networks (overlapping communities, networks with additional information about the nodes and edges, estimating the number of communities), link prediction (networks with missing or noisy links, networks evolving over time), prediction with data connected by a network (e.g., the role of friendship networks in the spread of risky behaviors among teenagers), and statistical analysis of samples of networks with applications to brain imaging, especially fMRI data from studies of mental health).

Laura Balzano

By |

Professor Balzano and her students investigate problems in statistical signal processing and optimization, particularly dealing with large and messy data. Her applications typically have missing, corrupted, and uncalibrated data as well as heterogeneous data in terms of sensors, sensor quality, and scale in both time and space. Her theoretical interests involve classes of non-convex problems that include Principal Components Analysis (or the Singular Value Decomposition) and many interesting variants such as PCA with sparse or structured principal components, orthogonality and non-negativity constraints, nonlinear variants such as low-dimensional algebraic variety models, and even categorical data or human preference data. She concentrates on fast gradient methods and related optimization methods that are scalable to real-time operation and massive data. Her work provides algorithmic and statistical guarantees for these algorithms on the aforementioned non-convex problems, and she focuses carefully on assumptions that are realistic for the relevant applications. She has worked in the areas of online algorithms, real-time computer vision, compressed sensing and matrix completion, network inference, and sensor networks.

Real-time dynamic background tracking and foreground separation. At time t = 101, the virtual camera slightly pans to right 20 pixels. We show how GRASTA quickly adapts to the new subspace by t = 125. The first row is the original video frame; the middle row is the tracked background; the bottom row is the separated foreground.

Real-time dynamic background tracking and foreground separation. At time t = 101, the virtual camera slightly pans to right 20 pixels. We show how GRASTA quickly adapts to the new subspace by t = 125. The first row is the original video frame; the middle row is the tracked background; the bottom row is the separated foreground.

Martin J. Strauss

By |

Martin J. Strauss, PhD, is Professor of Mathematics, College of Literature, Science, and the Arts and Professor of Electrical Engineering and Computer Science, College of Engineering, in the University of Michigan, Ann Arbor.

Prof. Strauss’ interests include randomized approximation algorithms for massive data sets, including, specifically, sublinear-time algorithms for sparse recovery in the Fourier and other domains. ¬†Other interests include data privacy, including privacy of energy usage data.

Long Nguyen

By |

I am broadly interested in statistical inference, which is informally defined as the process of turning data into prediction and understanding. I like to work with richly structured data, such as those extracted from texts, images and other spatiotemporal signals. In recent years I have gravitated toward a field in statistics known as Bayesian nonparametrics, which provides a fertile and powerful mathematical framework for the development of many computational and statistical modeling ideas. My motivation for all this came originally from an early interest in machine learning, which continues to be a major source of research interest. A primary focus of my group’s research in machine learning to develop more effective inference algorithms using stochastic, variational and geometric viewpoints.