Explore ARCExplore ARC

Ding Zhao

By |

Ding Zhao, PhD, is Assistant Research Scientist in the department of Mechanical Engineering, College of Engineering with a secondary appointment in the Robotics Institute at The University of Michigan, Ann Arbor.

Dr. Zhao’s research interests include autonomous vehicles, intelligent/connected transportation, traffic safety, human-machine interaction, rare events analysis, dynamics and control, machine learning, and big data analysis

 

Peter Adriaens

By |

My research focus is on the development and application of machine learning tools to large scale financial and unstructured (textual) data to extract, quantify and predict risk profiles and investment grade rating of private and public companies.  Example datasets include social media and financial aggregators such as Bloomberg, Pitchbook, and Privco.

Anna Kratz

By |

Anna Kratz, PhD, is Assistant Professor of Physical Medicine and Rehabilitation and the Center for Clinical Outcomes Development and Application (CODA) at the University of Michigan, Ann Arbor.

Dr. Kratz’s clinical research is focused on the characteristics and mechanisms of common symptoms (e.g. pain, fatigue, cognitive dysfunction) and functional outcomes in those with chronic clinical conditions.  Using a combination of ambulatory measurement methods of physical activity (actigraphy), heart rate variability, galvanic skin response, and self-reported experiences, her research aims to overlay the patient’s day-to-day experience with physiological markers of stress, sleep quality, and physical activity. She utilizes a number of computational approaches, including multilevel statistical modeling, signal processing, and machine learning to analyze these data. The ultimate goal is to use insights from these data to design better clinical interventions to help patients better manage symptoms and optimize functioning and quality of life.

Jie Shen

By |

One of my research interests is in the digital diagnosis of material damage based on sensors, computational science and numerical analysis with large-scale 3D computed tomography data: (1) Establishment of a multi-resolution transformation rule of material defects. (2) Design of an accurate digital diagnosis method for material damage. (3) Reconstruction of defects in material domains from X-ray CT data . (4) Parallel computation of materials damage. My team also conducted a series of studies for improving the quality of large-scale laser scanning data in reverse engineering and industrial inspection: (1) Detection and removal of non-isolated Outlier Data Clusters (2) Accurate correction of surface data noise of polygonal meshes (3) Denoising of two-dimensional geometric discontinuities.

Another research focus is on the information fusion of large-scale data from autonomous driving. Our research is funded by China Natural Science Foundation with focus on (1) laser-based perception in degraded visual environment, (2) 3D pattern recognition with dynamic, incomplete, noisy point clouds, (3) real-time image processing algorithms in degraded visual environment, and (4) brain-computer interface to predict the state of drivers.

Processing and Analysis of 3D Large-Scale Engineering Data

Processing and Analysis of 3D Large-Scale Engineering Data

Omid Dehzangi

By |

Omid Dehzangi, PhD, is Assistant Professor of Computer and Information Science, College of Engineering and Computer Science, at the University of Michigan, Dearborn.

Wearable health technology is drawing significant attention for good reasons. The pervasive nature of such systems providing ubiquitous access to the continuous personalized data will transform the way people interact with each other and their environment. The resulting information extracted from these systems will enable emerging applications in healthcare, wellness, emergency response, fitness monitoring, elderly care support, long-term preventive chronic care, assistive care, smart environments, sports, gaming, and entertainment which create many new research opportunities and transform researches from various disciplines into data science which is the methodological terminology for data collection, data management, data analysis, and data visualization. Despite the ground-breaking potentials, there are a number of interesting challenges in order to design and develop wearable medical embedded systems. Due to limited available resources in wearable processing architectures, power-efficiency is demanded to allow unobtrusive and long-term operation of the hardware. Also, the data-intensive nature of continuous health monitoring requires efficient signal processing and data analytic algorithms for real-time, scalable, reliable, accurate, and secure extraction of relevant information from an overwhelmingly large amount of data. Therefore, extensive research in their design, development, and assessment is necessary. Embedded Processing Platform Design The majority of my work concentrates on designing wearable embedded processing platforms in order to shift the conventional paradigms from hospital-centric healthcare with episodic and reactive focus on diseases to patient-centric and home-based healthcare as an alternative segment which demands outstanding specialized design in terms of hardware design, software development, signal processing and uncertainty reduction, data analysis, predictive modeling and information extraction. The objective is to reduce the costs and improve the effectiveness of healthcare by proactive early monitoring, diagnosis, and treatment of diseases (i.e. preventive) as shown in Figure 1.

Figure 1. Embedded processing platform in healthcare

Issam El Naqa

By |

Our lab’s research interests are in the areas of oncology bioinformatics, multimodality image analysis, and treatment outcome modeling. We operate at the interface of physics, biology, and engineering with the primary motivation to design and develop novel approaches to unravel cancer patients’ response to chemoradiotherapy treatment by integrating physical, biological, and imaging information into advanced mathematical models using combined top-bottom and bottom-top approaches that apply techniques of machine learning and complex systems analysis to first principles and evaluating their performance in clinical and preclinical data. These models could be then used to personalize cancer patients’ chemoradiotherapy treatment based on predicted benefit/risk and help understand the underlying biological response to disease. These research interests are divided into the following themes:

  • Bioinformatics: design and develop large-scale datamining methods and software tools to identify robust biomarkers (-omics) of chemoradiotherapy treatment outcomes from clinical and preclinical data.
  • Multimodality image-guided targeting and adaptive radiotherapy: design and develop hardware tools and software algorithms for multimodality image analysis and understanding, feature extraction for outcome prediction (radiomics), real-time treatment optimization and targeting.
  • Radiobiology: design and develop predictive models of tumor and normal tissue response to radiotherapy. Investigate the application of these methods to develop therapeutic interventions for protection of normal tissue toxicities.

Raj Rao Nadakuditi

By |

Raj Nadakuditi, PhD, is Associate Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Nadakuditi received his Masters and PhD in Electrical Engineering and Computer Science at MIT as part of the MIT/WHOI Joint Program in Ocean Science and Engineering. His work is at the interface of statistical signal processing and random matrix theory with applications such as sonar, radar, wireless communications and machine learning in mind.

Prof. Nadakuditi particularly enjoys using random matrix theory to address problems that arise in statistical signal processing. An important component of his work is applying it in real-world settings to tease out low-level signals from sensor, oceanographic, financial and econometric time/frequency measurements/time series. In addition to the satisfaction derived from transforming the theory into practice, real-world settings give us insight into how the underlying techniques can be refined and/or made more robust.

Laura Balzano

By |

Professor Balzano and her students investigate problems in statistical signal processing and optimization, particularly dealing with large and messy data. Her applications typically have missing, corrupted, and uncalibrated data as well as heterogeneous data in terms of sensors, sensor quality, and scale in both time and space. Her theoretical interests involve classes of non-convex problems that include Principal Components Analysis (or the Singular Value Decomposition) and many interesting variants such as PCA with sparse or structured principal components, orthogonality and non-negativity constraints, nonlinear variants such as low-dimensional algebraic variety models, and even categorical data or human preference data. She concentrates on fast gradient methods and related optimization methods that are scalable to real-time operation and massive data. Her work provides algorithmic and statistical guarantees for these algorithms on the aforementioned non-convex problems, and she focuses carefully on assumptions that are realistic for the relevant applications. She has worked in the areas of online algorithms, real-time computer vision, compressed sensing and matrix completion, network inference, and sensor networks.

Real-time dynamic background tracking and foreground separation. At time t = 101, the virtual camera slightly pans to right 20 pixels. We show how GRASTA quickly adapts to the new subspace by t = 125. The first row is the original video frame; the middle row is the tracked background; the bottom row is the separated foreground.

Real-time dynamic background tracking and foreground separation. At time t = 101, the virtual camera slightly pans to right 20 pixels. We show how GRASTA quickly adapts to the new subspace by t = 125. The first row is the original video frame; the middle row is the tracked background; the bottom row is the separated foreground.

Kevin Ward

By |

Kevin Ward, MD, is Professor of Emergency Medicine in the department of Emergency Medicine in the University of Michigan Medical School.

Dr. Ward is the director of the Michigan Center for Integrative Research in Critical Care (MCIRCC) and a new Medical School-wide innovation program, Fast Forward Medical Innovation. He has successfully developed monitors for measuring tissue oxygenation, volume status, redox potential, coagulation monitoring, image and physiologic signal analysis, and other physiologic parameters leading teams of engineers, basic scientists, and clinicians, bridging the translation gap.

Jerome P. Lynch

By |

Jerome P. Lynch, PhD, is Professor and Donald Malloure Department Chair of the Civil and Environmental Engineering Department in the College of Engineering in the University of Michigan, Ann Arbor.

Prof. Lynch’s group works at the forefront of deploying large-scale sensor networks to the built environment for monitoring and control of civil infrastructure systems including bridges, roads, rail networks, and pipelines; this research portfolio falls within the broader class of cyber-physical systems (CPS). To maximize the benefit of the massive data sets, they collect from operational infrastructure systems, and undertake research in the area of relational and NoSQL database systems, cloud-based analytics, and data visualization technologies. In addition, their algorithmic work is focused on the use of statistical signal processing, pattern classification, machine learning, and model inversion/updating techniques to automate the interrogation sensor data collected. The ultimate aim of Prof. Lynch’s work is to harness the full potential of data science to provide system users with real-time, actionable information obtained from the raw sensor data collected.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.