Negar Farzaneh

By |

Dr. Farzaneh’s research interest centers on the application of computer science, in particular, machine learning, signal processing, and computer vision, to develop clinical decision support systems and solve medical problems.

Ivy F. Tso

By |

My lab researches how the human brain processes social and affective information and how these processes are affected in psychiatric disorders, especially schizophrenia and bipolar disorder. We use behavioral, electrophysiological (EEG), neuroimaging (functional MRI), eye tracking, brain stimulation (TMS, tACS), and computational methods in our studies. One main focus of our work is building and validating computational models based on intensive, high-dimensional subject-level behavior and brain data to explain clinical phenomena, parse mechanisms, and predict patient outcome. The goal is to improve diagnostic and prognostic assessment, and to develop personalized treatments.

Brain activation (in parcellated map) during social and face processing.

Qing Qu

By |

His research interest lies in the intersection of signal processing, data science, machine learning, and numerical optimization. He is particularly interested in computational methods for learning low-complexity models from high-dimensional data, leveraging tools from machine learning, numerical optimization, and high dimensional geometry, with applications in imaging sciences, scientific discovery, and healthcare. Recently, he is also interested in understanding deep networks through the lens of low-dimensional modeling.

Wenbo Sun

By |

Uncertainty quantification and decision making are increasingly demanded with the development of future technology in engineering and transportation systems. Among the uncertainty quantification problems, Dr. Wenbo Sun is particularly interested in statistical modelling of engineering system responses with considering the high dimensionality and complicated correlation structure, as well as quantifying the uncertainty from a variety of sources simultaneously, such as the inexactness of large-scale computer experiments, process variations, and measurement noises. He is also interested in data-driven decision making that is robust to the uncertainty. Specifically, he delivers methodologies for anomaly detection and system design optimization, which can be applied to manufacturing process monitoring, distracted driving detection, out-of-distribution object identification, vehicle safety design optimization, etc.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021


Omar Jamil Ahmed

By |

The Ahmed lab studies behavioral neural circuits and attempts to repair them when they go awry in neurological disorders. Working with patients and with transgenic rodent models, we focus on how space, time and speed are encoded by the spatial navigation and memory circuits of the brain. We also focus on how these same circuits go wrong in Alzheimer’s disease, Parkinson’s disease and epilepsy. Our research involves the collection of massive volumes of neural data. Within these terabytes of data, we work to identify and understand irregular activity patterns at the sub-millisecond level. This requires us to leverage high performance computing environments, and to design custom algorithmic and analytical signal processing solutions. As part of our research, we also discover new ways for the brain to encode information (how neurons encode sequences of space and time, for example) – and the algorithms utilized by these natural neural networks can have important implications for the design of more effective artificial neural networks.

Sardar Ansari

By |

I build data science tools to address challenges in medicine and clinical care. Specifically, I apply signal processing, image processing and machine learning techniques, including deep convolutional and recurrent neural networks and natural language processing, to aid diagnosis, prognosis and treatment of patients with acute and chronic conditions. In addition, I conduct research on novel approaches to represent clinical data and combine supervised and unsupervised methods to improve model performance and reduce the labeling burden. Another active area of my research is design, implementation and utilization of novel wearable devices for non-invasive patient monitoring in hospital and at home. This includes integration of the information that is measured by wearables with the data available in the electronic health records, including medical codes, waveforms and images, among others. Another area of my research involves linear, non-linear and discrete optimization and queuing theory to build new solutions for healthcare logistic planning, including stochastic approximation methods to model complex systems such as dispatch policies for emergency systems with multi-server dispatches, variable server load, multiple priority levels, etc.

Jesse Hamilton

By |

My research focuses on the development of novel Magnetic Resonance Imaging (MRI) technology for imaging the heart. We focus in particular on quantitative imaging techniques, in which the signal intensity at each pixel in an image represents a measurement of an inherent property of a tissue. Much of our research is based on cardiac Magnetic Resonance Fingerprinting (MRF), which is a class of methods for simultaneously measuring multiple tissue properties from one rapid acquisition.

Our group is exploring novel ways to combine physics-based modeling of MRI scans with deep learning algorithms for several purposes. First, we are exploring the use of deep learning to design quantitative MRI scans with improved accuracy and precision. Second, we are developing deep learning approaches for image reconstruction that will allow us to reduce image noise, improve spatial resolution and volumetric coverage, and enable highly accelerated acquisitions to shorten scan times. Third, we are exploring ways of using artificial intelligence to derive physiological motion signals directly from MRI data to enable continuous scanning that is robust to cardiac and breathing motion. In general, we focus on algorithms that are either self-supervised or use training data generated in computer simulations, since the collection of large amounts of training data from human subjects is often impractical when designing novel imaging methods.

Kathryn Luker

By |

As an expert in molecular imaging of single cell signaling in cancer, I develop integrated systems of molecular, cellular, optical, and custom image processing tools to extract rich data sets for biochemical and behavioral functions in living cells over minutes to days. Data sets composed of thousands to millions of cells enable us to develop predictive models of cellular function through a variety of computational approaches, including ODE, ABM, and IRL modeling.