Zhongming Liu

By |

My research is at the intersection of neuroscience and artificial intelligence. My group uses neuroscience or brain-inspired principles to design models and algorithms for computer vision and language processing. In turn, we uses neural network models to test hypotheses in neuroscience and explain or predict human perception and behaviors. My group also develops and uses machine learning algorithms to improve the acquisition and analysis of medical images, including functional magnetic resonance imaging of the brain and magnetic resonance imaging of the gut.

We use brain-inspired neural networks models to predict and decode brain activity in humans processing information from naturalistic audiovisual stimuli.

Ya’acov Ritov

By |

My main interest is theoretical statistics as implied to complex model from semiparametric to ultra high dimensional regression analysis. In particular the negative aspects of Bayesian and causal analysis as implemented in modern statistics.

An analysis of the position of SCOTUS judges.

Vitaliy Popov

By |

My research focuses on understanding, designing, and evaluating learning technologies and environments that foster collaborative problem solving, spatial reasoning, engineering design thinking and agency. I am particularly interested in applying multimodal learning analytics in the context of co-located and/or virtually distributed teams in clinical simulations. I strive to utilize evidence in education science, simulation-based training and learning analytics to understand how people become expert health professionals, how they can better work in teams and how we can support these processes to foster health care delivery and health outcomes.

Nicole Seiberlich

By |

My research involves developing novel data collection strategies and image reconstruction techniques for Magnetic Resonance Imaging. In order to accelerate data collection, we take advantage of features of MRI data, including sparsity, spatiotemporal correlations, and adherence to underlying physics; each of these properties can be leveraged to reduce the amount of data required to generate an image and thus speed up imaging time. We also seek to understand what image information is essential for radiologists in order to optimize MRI data collection and personalize the imaging protocol for each patient. We deploy machine learning algorithms and optimization techniques in each of these projects. In some of our work, we can generate the data that we need to train and test our algorithms using numerical simulations. In other portions, we seek to utilize clinical images, prospectively collected MRI data, or MRI protocol information in order to refine our techniques.

We seek to develop technologies like cardiac Magnetic Resonance Fingerprinting (cMRF), which can be used to efficiently collect multiple forms of information to distinguish healthy and diseased tissue using MRI. By using rapid methods like cMRF, quantitative data describing disease processes can be gathered quickly, enabling more and sicker patients can be assessed via MRI. These data, collected from many patients over time, can also be used to further refine MRI technologies for the assessment of specific diseases in a tailored, patient-specific manner.

Kathleen Sienko

By |

Age- and sensory-related deficits in balance function drastically impact quality of life and present long-term care challenges. Successful fall prevention programs include balance exercise regimes, designed to recover, retrain, or develop new sensorimotor strategies to facilitate functional mobility. Effective balance-training programs require frequent visits to the clinic and/or the supervision of a physical therapist; however, one-on-one guided training with a physical therapist is not scalable for long-term balance training preventative and therapeutic programs. To enable preventative and therapeutic at-home balance training, we aim to develop models for automatically 1) evaluating balance and, 2) delivering personalized training guidance for community dwelling OA and people with sensory disabilities.

Smart Phone Balance Trainer

Xudong (Sherman) Fan

By |

We conduct research to analyze breath from patients in order to diagnose and monitor diseases.
We also develop imaging modalities to analyze tissues for cancer diagnosis

Christopher E. Gillies

By |

I am Research Faculty with the Michigan Center for Integrative Research in Critical Care (MCIRCC). Our team builds predictive algorithms, analyzes signals, and implements statistical models to advance Critical Care Medicine. We use electronic healthcare record data to build predictive algorithms. One example of this is Predicting Intensive Care Transfers and other Unforeseen Events (PICTURE), which uses commonly collected vital signs and labs to predict patient deterioration on the general hospital floor. Additionally, our team collects waveforms from the University Hospital, and we store this data utilizing Amazon Web Services. We use these signals to build predictive algorithms to advance precision medicine. Our flagship algorithm called Analytic for Hemodynamic Instability (AHI), predicts patient deterioration using a single-lead electrocardiogram signal. We use Bayesian methods to analyze metabolomic biomarker data from blood and exhaled breath to understand Sepsis and Acute Respiratory Distress Syndrome. I also have an interest in statistical genetics.

Aaron A. King

By |

The long temporal and large spatial scales of ecological systems make controlled experimentation difficult and the amassing of informative data challenging and expensive. The resulting sparsity and noise are major impediments to scientific progress in ecology, which therefore depends on efficient use of data. In this context, it has in recent years been recognized that the onetime playthings of theoretical ecologists, mathematical models of ecological processes, are no longer exclusively the stuff of thought experiments, but have great utility in the context of causal inference. Specifically, because they embody scientific questions about ecological processes in sharpest form—making precise, quantitative, testable predictions—the rigorous confrontation of process-based models with data accelerates the development of ecological understanding. This is the central premise of my research program and the common thread of the work that goes on in my laboratory.

Harm Derksen

By |

Current research includes a project funded by Toyota that uses Markov Models and Machine Learning to predict heart arrhythmia, an NSF-funded project to detect Acute Respiratory Distress Syndrome (ARDS) from x-ray images and projects using tensor analysis on health care data (funded by the Department of Defense and National Science Foundation).