Andrew Krumm

By |

My research examines the ways in which individuals and organizations use data to improve. Quality improvement and data-intensive research approaches are central to my work along with forming equitable collaborations between researchers and frontline workers. Prior to joining the Department of Learning Health Sciences, I was the Director of Learning Analytics Research at Digital Promise and a Senior Education Researcher in the Center for Technology in Learning at SRI International. At both organizations, I developed data-intensive research-practice partnerships with educational organizations of all types. As a learning scientist working at the intersection of data-intensive research and quality improvement, my colleagues and I have developed tools and strategies (e.g., cloud-based, open source tools for engaging in collaborative exploratory data analyses) that partnerships between researchers and practitioners can use to measure learning and improve learning environments.

This is an image that my colleagues and I, over multiple projects, developed to communicate the multiple steps involved in collaborative data-intensive improvement. The “organize” and “understand” phases are about asking the right questions before the work of data analysis begins: “co-develop” and “test” are about taking action following an analysis. Along with identifying common phases, we have also observed the importance of the following supporting conditions: a trusting partnership, the use of formal improvement methods, common data workflows, and intentional efforts to support the learning of everyone involved in the project.

Christopher Fariss

By |

My core research focuses on the politics and measurement of human rights, discrimination, violence, and repression. I use computational methods to understand why governments around the world torture, maim, and kill individuals within their jurisdiction and the processes monitors use to observe and document these abuses. Other projects cover a broad array of themes but share a focus on computationally intensive methods and research design. These methodological tools, essential for analyzing data at massive scale, open up new insights into the micro-foundations of state repression and the politics of measurement.

People rely more on strong ties for job help in countries with greater inequality. Coefficients from 55 regressions of job transmission on tie strength are compared to measures of inequality (Gini coefficient), mean income per capita, and population, all measured in 2013. Gray lines indicate 95% confidence regions from 1000 simulated regressions that incorporate uncertainty in the country-level regressions (see below for more details). In each simulated regression we draw each country point from the distribution of regression coefficients implied by the estimate and standard error for that country and measure of tie strength. P values indicate the simulated probability that there is no relationship between tie strength and the other variable. Laura K. Gee, Jason J. Jones, Christopher J. Fariss, Moira Burke, and James H. Fowler. “The Paradox of Weak Ties in 55 Countries” Journal of Economic Behavior & Organization 133:362-372 (January 2017) DOI:10.1016/j.jebo.2016.12.004

Shu-Fang Shih

By |

Shu-Fang Shih, Ph.D., has a diverse background in public health, business administration, risk management and insurance, and actuarial science. Her research has focused on design, implementation, and evaluation of theory-based health programs for children, adolescents, pregnant women, and older adults in various settings. In addition, she used econometric methods, psychometric, and other statistical methods to examine various health issues among children, adolescent, emerging adulthood, pregnant women, and the older adults. She is particularly interested in designing effective ways to align public health, social services, and healthcare to achieve the goal of family-centered and integrated/coordinated care for the family.

Gongjun Xu

By |

Dr. Gongjun Xu is an assistant professor in the Department of Statistics at the University of Michigan. Dr. Xu’s research interests include latent variable models, psychometrics, cognitive diagnosis modeling, high-dimensional statistics, and semiparametric statistics.

Ginger Shultz

By |

The Shultz group uses data science methods in two primary ways 1) to investigate student placement in introductory chemistry courses and 2) to analyze student texts to provide instructors actionable intelligence about student learning. Using regression discontinuity we investigated the impact of taking general chemistry prior to organic chemistry on student performance and persistence in later chemistry courses and found that students who took general chemistry first benefitted by 1/4 of a letter grade but were no more likely to persist. A continued investigation using survey and interview methods indicated that this was related to academic skills rather than content preparation. Through the MWrite project we have collected a large corpus of student texts and are developing automated text analysis methods to glean information about student learning across disciplines, with specific focus on scientific reasoning.

Network representation of writing moves made by students in argumentative writing with relevant transition probabilities. The size of the node represents the relative frequency of operation use and the edge labels represent the transition probability with key transitions highlighted in orange.

Pamela Davis-Kean

By |

Pamela Davis-Kean, PhD, is Professor of Psychology, College of Literature, Science, and the Arts, and Research Professor, Survey Research Center and Research Center for Group Dynamics, Institute for Social Research, at the University of Michigan, Ann Arbor.

Prof. Davis-Kean is the Director of the Population, Neurodevelopment, and Genetics program at the Institute for Social Research. This group examines the complex transactions of brain, biology, and behavior as children and families develop across time. She is interested in both micro (brain and biology) and macro (family and socioeconomic conditions) aspects of development to understand the full developmental story of individuals.  Her primary focus in this area is how stress relates to family socioeconomic status and how that translates to parenting beliefs and behaviors that influence the development of children.