Bogdan I. Epureanu

By |

• Computational dynamics focused on nonlinear dynamics and finite elements (e.g., a new approach for forecasting bifurcations/tipping points in aeroelastic and ecological systems, new finite element methods for thin walled beams that leads to novel reduced order models).
• Modeling nonlinear phenomena and mechano-chemical processes in molecular motor dynamics, such as motor proteins, toward early detection of neurodegenerative diseases.
• Computational methods for robotics, manufacturing, modeling multi-body dynamics, developed methods for identifying limit cycle oscillations in large-dimensional (fluid) systems.
• Turbomachinery and aeroelasticity providing a better understanding of fundamental complex fluid dynamics and cutting-edge models for predicting, identifying and characterizing the response of blisks and flade systems through integrated experimental & computational approaches.
• Structural health monitoring & sensing providing increased sensibility / capabilities by the discovery, characterization and exploitation of sensitivity vector fields, smart system interrogation through nonlinear feedback excitation, nonlinear minimal rank perturbation and system augmentation, pattern recognition for attractors, damage detection using bifurcation morphing.

Tayo Fabusuyi

By |

Tayo Fabusuyi is an assistant research scientist in the Human Factors Group at UMTRI. His research interests are in Urban Systems and Operations Research, specifically designing and implementing initiatives that support sustainable and resilient communities with a focus on efficiency and equity issues. Drawing on both quantitative and qualitative data, his research develops and applies hard and soft Operations Research methods to urban systems issues in a manner that emphasizes theory driven solutions with demonstrated value-added. A central theme of his research activities is the use of demand side interventions, via information and pricing strategies in influencing the public’s travel behavior with the objective of achieving more beneficial societal outcomes. Informed by the proliferation of big data and the influence of transportation in the urban sphere, these research activities are categorized broadly into three overlapping and interdependent areas – intelligent transportation systems (ITS), emerging mobility services and urban futures. Before joining the research faculty at UMTRI, Dr. Fabusuyi was a Planning Economist at the African Development Bank and an adjunct Economics faculty member at Carnegie Mellon University, where he received his Ph.D. in Engineering and Public Policy.

Lana Garmire

By |

My research interest lies in applying data science for actionable transformation of human health from the bench to bedside. Current research focus areas include cutting edge single-cell sequencing informatics and genomics; precision medicine through integration of multi-omics data types; novel modeling and computational methods for biomarker research; public health genomics. I apply my biomedical informatics and analytical expertise to study diseases such as cancers, as well the impact of pregnancy/early life complications on later life diseases.

Ranjan Pal

By |

Cyber-security is a complex and multi-dimensional research field. My research style comprises an inter-disciplinary (primarily rooted in economics, econometrics, data science (AI/ML/Bayesian and Frequentist Statistics), game theory, and network science) investigation of major socially pressing issues impacting the quality of cyber-risk management in modern networked and distributed engineering systems such as IoT-driven critical infrastructures, cloud-based service networks, and app-based systems (e.g., mobile commerce, smart homes) to name a few. I take delight in proposing data-driven, rigorous, and interdisciplinary solutions to both, existing fundamental challenges that pose a practical bottleneck to (cost) effective cyber-risk management, and futuristic cyber-security and privacy issues that might plague modern (networked) engineering systems. I strongly strive for originality, practical significance, and mathematical rigor in my solutions. One of my primary end goals is to conceptually get arms around complex, multi-dimensional information security and privacy problems in a way that helps, informs, and empowers practitioners and policy makers to take the right steps in making the cyber-space more secure.

Mihaela (Miki) Banu

By |

In the area of multi-scale modeling of manufacturing processes: (a) Models for understanding the mechanisms of forming and joining of lightweight materials. This new understanding enables the development of advanced processes which remove limitations of current state-of-the-art capabilities that exhibit limited formability of high strength lightweight alloys, and limited reproducibility of joining quality; (b) Innovative multi-scale finite element models for ultrasonic welding of battery tabs (resulting in models adopted by GM for designing and manufacturing batteries for the Chevy Volt), and multi-scale models for ultrasonic welding of short carbon fiber composites (resulting in models adopted by GM for designing and manufacturing assemblies made of carbon fiber composites with metallic parts); (c) Data-driven algorithms of prediction geometrical and microstructural integrity of the incremental formed parts. Machine learning is used for developing fast and robust methods to be integrated into the designing process and replace finite element simulations.

Xu Shi

By |

My methodological research focus on developing statistical methods for routinely collected healthcare databases such as electronic health records (EHR) and claims data. I aim to tackle the unique challenges that arise from the secondary use of real-world data for research purposes. Specifically, I develop novel causal inference methods and semiparametric efficiency theory that harness the full potential of EHR data to address comparative effectiveness and safety questions. I develop scalable and automated pipelines for curation and harmonization of EHR data across healthcare systems and coding systems.

Evan Keller

By |

Our laboratory focuses on (1) the biology of cancer metastasis, especially bone metastasis, including the role of the host microenvironment; and (2) mechanisms of chemoresistance. We explore for genes that regulate metastasis and the interaction between the host microenvironment and cancer cells. We are performing single cell multiomics and spatial analysis to enable us to identify rare cell populations and promote precision medicine. Our research methodology uses a combination of molecular, cellular, and animal studies. The majority of our work is highly translational to provide clinical relevance to our work. In terms of data science, we collaborate on applications of both established and novel methodologies to analyze high dimensional; deconvolution of high dimensional data into a cellular and tissue context; spatial mapping of multiomic data; and heterogenous data integration.

Tamas Gombosi

By |

Tamas Gombosi is the Konstantin Gringauz Distinguished University Professor of Space Science and the Gerstacker Professor of Engineering at the University of Michigan.
Over his four-decade-long career at Michigan he participated in a number of space missions (Cassini, Rosetta, Stereo, MMS and others). In the last two decades he has led a highly interdisciplinary team that developed the first solution adaptive (AMR) global magnetohydrodynamic (MHD) simulation code of space plasmas. His most recent research focus is to bring advanced machine learning to space weather modeling.
He is Fellow of the AGU (1996), Member of the International Academy of Astronautics (1997), recipient of AGU’s inaugural Space Weather Prize (2013), Van Allen Lecturer of AGU’s SPA section (2017), recipient of the Kristian Birkeland Medal (2018), and recipient of AGU’s John Adam Fleming Medal (2020).

Nambi Nallasamy

By |

Our team develops machine learning algorithms for the enhancement of outcomes in cataract surgery, the most commonly performed surgery in the world. Our works focuses on developing models for postoperative refraction after cataract surgery and analysis of surgical quality.

Stefan Szymanski

By |

I work on the analysis of sports as they relate to economics, business, finance, history, performance modeling, analytics and prediction/forecasting. I typically use panel data econometric techniques to understand team performance in professional sports. I also have interest in forecast models.