Zhongming Liu

By |

My research is at the intersection of neuroscience and artificial intelligence. My group uses neuroscience or brain-inspired principles to design models and algorithms for computer vision and language processing. In turn, we uses neural network models to test hypotheses in neuroscience and explain or predict human perception and behaviors. My group also develops and uses machine learning algorithms to improve the acquisition and analysis of medical images, including functional magnetic resonance imaging of the brain and magnetic resonance imaging of the gut.

We use brain-inspired neural networks models to predict and decode brain activity in humans processing information from naturalistic audiovisual stimuli.

Lucia Cevidanes

By |

We have developed and tested machine learning approaches to integrate quantitative markers for diagnosis and assessment of progression of TMJ OA, as well as extended the capabilities of 3D Slicer4 into web-based tools and disseminated open source image analysis tools. Our aims use data processing and in-depth analytics combined with learning using privileged information, integrated feature selection, and testing the performance of longitudinal risk predictors. Our long term goals are to improve diagnosis and risk prediction of TemporoMandibular Osteoarthritis in future multicenter studies.

The Spectrum of Data Science for Diagnosis of Osteoarthritis of the Temporomandibular Joint

Libby Hemphill

By |

Dr. Hemphill studies conversations in social media and aims to promote just access to social media spaces and their data. She uses computational approaches to modeling political topics, predicting and addressing toxicity in online discussions, and tracing linguistic adaptations among extremists. She also studies digital data curation and is especially interested in ways to measure and model data reuse so that we can make informed decisions about how to allocate data resources.

Kean Ming Tan

By |

I am an applied statistician working on statistical machine learning methods for analyzing complex biomedical data sets. I develop multivariate statistical methods such as probabilistic graphical models, cluster analysis, discriminant analysis, and dimension reduction to uncover patterns from massive data set. Recently, I also work on topics related to robust statistics, non-convex optimization, and data integration from multiple sources.

Aditi Misra

By |

Transportation is the backbone of the urban mobility system and is one of the greatest sources of environmental emissions and pollutions. Making urban transportation efficient, equitable and sustainable is the main focus of my research. My students and I analyze small scale survey data as well as large scale spatiotemporal data to identify travel behavior trends and patterns at a disaggregate level using econometric methods, which we then scale up to the population level through predictive and statistical modeling. We also design our own data collection methods and instruments, be it a network of smart devices or stated preference experiments. Our expertise lies in identifying latent constructs that influence decisions and choices, which in turn dictate demands on the systems and subsystems. We use our expertise to design incentives and policy suggestions that can help promote sustainable and equitable multimodal transportation systems. Our team also uses data analytics, particularly classification and pattern recognition algorithms, to analyze crash context data and develop safety-critical scenarios for automated and connected vehicle (CAV) deployment. We have developed an online game based on such scenarios to promote safe shared mobility among teenagers and young adults and plan to expand research in that area. We are also currently expanding our research to explore the use of NN in context information synthesis.

This is a project where we used classification and Bayesian models to identify scenarios that are risky for pedestrians and bicyclists. We then developed an online game based on those scenarios for middle schoolers so that they are better prepared for shared road conflicts.

Vitaliy Popov

By |

My research focuses on understanding, designing, and evaluating learning technologies and environments that foster collaborative problem solving, spatial reasoning, engineering design thinking and agency. I am particularly interested in applying multimodal learning analytics in the context of co-located and/or virtually distributed teams in clinical simulations. I strive to utilize evidence in education science, simulation-based training and learning analytics to understand how people become expert health professionals, how they can better work in teams and how we can support these processes to foster health care delivery and health outcomes.

Nicole Seiberlich

By |

My research involves developing novel data collection strategies and image reconstruction techniques for Magnetic Resonance Imaging. In order to accelerate data collection, we take advantage of features of MRI data, including sparsity, spatiotemporal correlations, and adherence to underlying physics; each of these properties can be leveraged to reduce the amount of data required to generate an image and thus speed up imaging time. We also seek to understand what image information is essential for radiologists in order to optimize MRI data collection and personalize the imaging protocol for each patient. We deploy machine learning algorithms and optimization techniques in each of these projects. In some of our work, we can generate the data that we need to train and test our algorithms using numerical simulations. In other portions, we seek to utilize clinical images, prospectively collected MRI data, or MRI protocol information in order to refine our techniques.

We seek to develop technologies like cardiac Magnetic Resonance Fingerprinting (cMRF), which can be used to efficiently collect multiple forms of information to distinguish healthy and diseased tissue using MRI. By using rapid methods like cMRF, quantitative data describing disease processes can be gathered quickly, enabling more and sicker patients can be assessed via MRI. These data, collected from many patients over time, can also be used to further refine MRI technologies for the assessment of specific diseases in a tailored, patient-specific manner.

Kathleen Sienko

By |

Age- and sensory-related deficits in balance function drastically impact quality of life and present long-term care challenges. Successful fall prevention programs include balance exercise regimes, designed to recover, retrain, or develop new sensorimotor strategies to facilitate functional mobility. Effective balance-training programs require frequent visits to the clinic and/or the supervision of a physical therapist; however, one-on-one guided training with a physical therapist is not scalable for long-term balance training preventative and therapeutic programs. To enable preventative and therapeutic at-home balance training, we aim to develop models for automatically 1) evaluating balance and, 2) delivering personalized training guidance for community dwelling OA and people with sensory disabilities.

Smart Phone Balance Trainer