Sardar Ansari

By |

I build data science tools to address challenges in medicine and clinical care. Specifically, I apply signal processing, image processing and machine learning techniques, including deep convolutional and recurrent neural networks and natural language processing, to aid diagnosis, prognosis and treatment of patients with acute and chronic conditions. In addition, I conduct research on novel approaches to represent clinical data and combine supervised and unsupervised methods to improve model performance and reduce the labeling burden. Another active area of my research is design, implementation and utilization of novel wearable devices for non-invasive patient monitoring in hospital and at home. This includes integration of the information that is measured by wearables with the data available in the electronic health records, including medical codes, waveforms and images, among others. Another area of my research involves linear, non-linear and discrete optimization and queuing theory to build new solutions for healthcare logistic planning, including stochastic approximation methods to model complex systems such as dispatch policies for emergency systems with multi-server dispatches, variable server load, multiple priority levels, etc.

Jesse Hamilton

By |

My research focuses on the development of novel Magnetic Resonance Imaging (MRI) technology for imaging the heart. We focus in particular on quantitative imaging techniques, in which the signal intensity at each pixel in an image represents a measurement of an inherent property of a tissue. Much of our research is based on cardiac Magnetic Resonance Fingerprinting (MRF), which is a class of methods for simultaneously measuring multiple tissue properties from one rapid acquisition.

Our group is exploring novel ways to combine physics-based modeling of MRI scans with deep learning algorithms for several purposes. First, we are exploring the use of deep learning to design quantitative MRI scans with improved accuracy and precision. Second, we are developing deep learning approaches for image reconstruction that will allow us to reduce image noise, improve spatial resolution and volumetric coverage, and enable highly accelerated acquisitions to shorten scan times. Third, we are exploring ways of using artificial intelligence to derive physiological motion signals directly from MRI data to enable continuous scanning that is robust to cardiac and breathing motion. In general, we focus on algorithms that are either self-supervised or use training data generated in computer simulations, since the collection of large amounts of training data from human subjects is often impractical when designing novel imaging methods.

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.

Nicholas Henderson

By |

My research primarily focuses on the following main themes: 1) development of methods for risk prediction and analyzing treatment effect heterogeneity, 2) Bayesian nonparametrics and Bayesian machine learning methods with a particular emphasis on the use of these methods in the context of survival analysis, 3) statistical methods for analyzing heterogeneity in risk-benefit profiles and for supporting individualized treatment decisions, and 4) development of empirical Bayes and shrinkage methods for high-dimensional statistical applications. I am also broadly interested in collaborative work in biomedical research with a focus on the application of statistics in cancer research.

Tayo Fabusuyi

By |

Tayo Fabusuyi is an assistant research scientist in the Human Factors Group at UMTRI. His research interests are in Urban Systems and Operations Research, specifically designing and implementing initiatives that support sustainable and resilient communities with a focus on efficiency and equity issues. Drawing on both quantitative and qualitative data, his research develops and applies hard and soft Operations Research methods to urban systems issues in a manner that emphasizes theory driven solutions with demonstrated value-added. A central theme of his research activities is the use of demand side interventions, via information and pricing strategies in influencing the public’s travel behavior with the objective of achieving more beneficial societal outcomes. Informed by the proliferation of big data and the influence of transportation in the urban sphere, these research activities are categorized broadly into three overlapping and interdependent areas – intelligent transportation systems (ITS), emerging mobility services and urban futures. Before joining the research faculty at UMTRI, Dr. Fabusuyi was a Planning Economist at the African Development Bank and an adjunct Economics faculty member at Carnegie Mellon University, where he received his Ph.D. in Engineering and Public Policy.

Shaobing Xu

By |

My work lies in the learning, control, and design of autonomous systems with an emphasis on connected automated vehicles (CAVs). I have been committed to developing robust autonomous vehicles, augmented reality (AR) technology, and V2X systems at Mcity. The highlights include: (1) a robust self-driving algorithm/software stack enabling high-level CAVs; (2) a data-and-AI-driven sensor-level augmented reality (AR) system for efficient safe CAV tests. These systems have been deployed on the Mcity CAV fleet and Mcity testing track for daily operations. I am interested in using big naturalistic human-driving data to train motion planning and control algorithms of self-driving cars, so the automated cars could behave with better roadmanship and thus higher acceptance. I am also interested in data-driven low-uncertainty learning algorithms for object detection, tracking, and fusion, in order to build the perception system of safety-critical autonomous systems.

Wenhao Sun

By |

We are interested in resolving outstanding fundamental scientific problems that impede the computational materials design process. Our group uses high-throughput density functional theory, applied thermodynamics, and materials informatics to deepen our fundamental understanding of synthesis-structure-property relationships, while exploring new chemical spaces for functional technological materials. These research interests are driven by the practical goal of the U.S. Materials Genome Initiative to accelerate materials discovery, but whose resolution requires basic fundamental research in synthesis science, inorganic chemistry, and materials thermodynamics.

Salar Fattahi

By |

Today’s real-world problems are complex and large, often with overwhelmingly large number of unknown variables which render them doomed to the so-called “curse of dimensionality”. For instance, in energy systems, the system operators should solve optimal power flow, unit commitment, and transmission switching problems with tens of thousands of continuous and discrete variables in real time. In control systems, a long standing question is how to efficiently design structured and distributed controllers for large-scale and unknown dynamical systems. Finally, in machine learning, it is important to obtain simple, interpretable, and parsimonious models for high-dimensional and noisy datasets. Our research is motivated by two main goals: (1) to model these problems as tractable optimization problems; and (2) to develop structure-aware and scalable computational methods for these optimization problems that come equipped with certifiable optimality guarantees. We aim to show that exploiting hidden structures in these problems—such as graph-induced or spectral sparsity—is a key game-changer in the pursuit of massively scalable and guaranteed computational methods.

9.9.2020 MIDAS Faculty Research Pitch Video.

My research lies at the intersection of optimization, data analytics, and control.

Albert S. Berahas

By |

Albert S. Berahas is an Assistant Professor in the department of Industrial & Operations Engineering. His research broadly focuses on designing, developing and analyzing algorithms for solving large scale nonlinear optimization problems. Such problems are ubiquitous, and arise in a plethora of areas such as engineering design, economics, transportation, robotics, machine learning and statistics. Specifically, he is interested in and has explored several sub-fields of nonlinear optimization such as: (i) general nonlinear optimization algorithms, (ii) optimization algorithms for machine learning, (iii) constrained optimization, (iv) stochastic optimization, (v) derivative-free optimization, and (vi) distributed optimization.

9.9.2020 MIDAS Faculty Research Pitch Video.

Alex Gorodetsky

By |

Alex Gorodetsky’s research is at the intersection of applied mathematics, data science, and computational science, and is focused on enabling autonomous decision making under uncertainty. He is especially interested in controlling, designing, and analyzing autonomous systems that must act in complex environments where observational data and expensive computational simulations must work together to ensure objectives are achieved. Toward this goal, he pursues research in wide-ranging areas including uncertainty quantification, statistical inference, machine learning, control, and numerical analysis. His methodology is to increase scalability of probabilistic modeling and analysis techniques such as Bayesian inference and uncertainty quantification. His current strategies to achieving scalability revolve around leveraging computational optimal transport, developing tensor network learning algorithms, and creating new multi-fidelity information fusion approaches.

Sample workflow for enabling autonomous decision making under uncertainty for a drone operating in a complex environment. We develop algorithms to compress simulation data by exploiting problem structure. We then embed the compressed representations onto onboard computational resources. Finally, we develop approaches to enable the drone to adapt, learn, and refine knowledge by interacting with, and collecting data from, the environment.