Explore ARCExplore ARC

Yongsheng Bai

By |

Dr. Bai’s research interests lie in development and refinement of bioinformatics algorithms/software and databases on next-generation sequencing (NGS data), development of statistical model for solving biological problems, bioinformatics analysis of clinical data, as well as other topics including, but not limited to, uncovering disease genes and variants using informatics approaches, computational analysis of cis-regulation and comparative motif finding, large-scale genome annotation, comparative “omics”, and evolutionary genomics.

Xun Huan

By |

Prof. Huan’s research broadly revolves around uncertainty quantification, data-driven modeling, and numerical optimization. He focuses on methods to bridge together models and data: e.g., optimal experimental design, Bayesian statistical inference, uncertainty propagation in high-dimensional settings, and algorithms that are robust to model misspecification. He seeks to develop efficient numerical methods that integrate computationally-intensive models with big data, and combine uncertainty quantification with machine learning to enable robust and reliable prediction, design, and decision-making.

Optimal experimental design seeks to identify experiments that produce the most valuable data. For example, when designing a combustion experiment to learn chemical kinetic parameters, design condition A maximizes the expected information gain. When Bayesian inference is performed on data from this experiment, we indeed obtain “tighter” posteriors (with less uncertainty) compared to those obtained from suboptimal design conditions B and C.

Neda Masoud

By |

The future of transportation lies at the intersection of two emerging trends, namely, the sharing economy and connected and automated vehicle technology. Our research group investigates the impact of these two major trends on the future of mobility, quantifying the benefits and identifying the challenges of integrating these technologies into our current systems.

Our research on shared-use mobility systems focuses on peer-to-peer (P2P) ridesharing and multi-modal transportation. We provide: (i) operational tools and decision support systems for shared-use mobility in legacy as well as connected and automated transportation systems. This line of research focuses on system design as well as routing, scheduling, and pricing mechanisms to serve on-demand transportation requests; (ii) insights for regulators and policy makers on mobility benefits of multi-modal transportation; (ii) planning tools that would allow for informed regulations of sharing economy.

In another line of research we investigate challenges faced by the connected automated vehicle technology before mass adoption of this technology can occur. Our research mainly focuses on (i) transition of control authority between the human driver and the autonomous entity in semi-autonomous (level 3 SAE autonomy) vehicles; (ii) incorporating network-level information supplied by connected vehicle technology into traditional trajectory planning; (iii) improving vehicle localization by taking advantage of opportunities provided by connected vehicles; and (iv) cybersecurity challenges in connected and automated systems. We seek to quantify the mobility and safety implications of this disruptive technology, and provide insights that can allow for informed regulations.

Tim Cernak

By |

Tim Cernak, PhD, is Assistant Professor of Medicinal Chemistry with secondary appointments in Chemistry and the Chemical Biology Program at the University of Michigan, Ann Arbor.

The functional and biological properties of a small molecule are encoded within its structure so synthetic strategies that access diverse structures are paramount to the invention of novel functional molecules such as biological probes, materials or pharmaceuticals. The Cernak Lab studies the interface of chemical synthesis and computer science to understand the relationship of structure, properties and reactions. We aim to use algorithms, robotics and big data to invent new chemical reactions, synthetic routes to natural products, and small molecule probes to answer questions in basic biology. Researchers in the group learn high-throughput chemical and biochemical experimentation, basic coding, and modern synthetic techniques. By studying the relationship of chemical synthesis to functional properties, we pursue the opportunity to positively impact human health.

Brian P. McCall

By |

My interests are in the areas of labor economics, program evaluation, and the economics of education. Currently my research focuses on college student debt accumulation and the subsequent risk of default, the effect of tuition subsidies on college attendance, the influence of family wealth on college attendance and completion, the effect of financial aid packages on college attendance, completion and subsequent labor market earnings, the influence of education on job displacement and subsequent earnings, the impact of unemployment insurance rules on unemployment durations and re-employment wages, and the determinants and consequences of repeat use of the unemployment insurance system.

Romesh Saigal

By |

Professor Saigal has held faculty positions at the Haas School of Business, Berkeley and the department of Industrial Engineering and Management Sciences at Northwestern University, has been a researcher at the Bell Telephone Laboratories and numerous short term visiting positions. He currently teaches courses in Financial Engineering. In the recent past he taught courses in optimization, and Management Science. His current research involves data based studies of operational problems in the areas of Finance, Transportation, Renewable Energy and Healthcare, with an emphasis on the management and pricing of risks. This involves the use of data analytics, optimization, stochastic processes and financial engineering tools. His earlier research involved theoretical investigation into interior point methods, large scale optimization and software development for mathematical programming. He is an author of two books on optimization and large set of publications in top refereed journals. He has been an associate editor of Management Science and is a member of SIAM, AMS and AAAS. He has served as the Director of the interdisciplinary Financial Engineering Program and as the Director of Interdisciplinary Professional Programs (now Integrative Design + Systems) at the College of Engineering.

Lawrence Seiford

By |

Professor Seiford’s research interests are primarily in the areas of quality engineering, productivity analysis, process improvement, multiple-criteria decision making, and performance measurement. In addition, he is recognized as one of the world’s experts in the methodology of Data Envelopment Analysis. His current research involves the development of benchmarking models for identifying best-practice in manufacturing and service systems. He has written and co-authored four books and over one hundred articles in the areas of quality, productivity, operations management, process improvement, decision analysis, and decision support systems.

Peter Adriaens

By |

My research focus is on the development and application of machine learning tools to large scale financial and unstructured (textual) data to extract, quantify and predict risk profiles and investment grade rating of private and public companies.  Example datasets include social media and financial aggregators such as Bloomberg, Pitchbook, and Privco.

Sriram Chandrasekaran

By |

Sriram Chandrasekaran, PhD, is Assistant Professor of Biomedical Engineering in the College of Engineering at the University of Michigan, Ann Arbor.

Dr. Chandrasekaran’s Systems Biology lab develops computer models of biological processes to understand them holistically. Sriram is interested in deciphering how thousands of proteins work together at the microscopic level to orchestrate complex processes like embryonic development or cognition, and how this complex network breaks down in diseases like cancer. Systems biology software and algorithms developed by his lab are highlighted below and are available at http://www.sriramlab.org/software/.

– INDIGO (INferring Drug Interactions using chemoGenomics and Orthology) algorithm predicts how antibiotics prescribed in combinations will inhibit bacterial growth. INDIGO leverages genomics and drug-interaction data in the model organism – E. coli, to facilitate the discovery of effective combination therapies in less-studied pathogens, such as M. tuberculosis. (Ref: Chandrasekaran et al. Molecular Systems Biology 2016)

– GEMINI (Gene Expression and Metabolism Integrated for Network Inference) is a network curation tool. It allows rapid assessment of regulatory interactions predicted by high-throughput approaches by integrating them with a metabolic network (Ref: Chandrasekaran and Price, PloS Computational Biology 2013)

– ASTRIX (Analyzing Subsets of Transcriptional Regulators Influencing eXpression) uses gene expression data to identify regulatory interactions between transcription factors and their target genes. (Ref: Chandrasekaran et al. PNAS 2011)

– PROM (Probabilistic Regulation of Metabolism) enables the quantitative integration of regulatory and metabolic networks to build genome-scale integrated metabolic–regulatory models (Ref: Chandrasekaran and Price, PNAS 2010)

 

Research Overview: We develop computational algorithms that integrate omics measurements to create detailed genome-scale models of cellular networks. Some clinical applications of our algorithms include finding metabolic vulnerabilities in pathogens (M. tuberculosis) using PROM, and designing multi combination therapeutics for reducing antibiotic resistance using INDIGO.

Research Overview: We develop computational algorithms that integrate omics measurements to create detailed genome-scale models of cellular networks. Some clinical applications of our algorithms include finding metabolic vulnerabilities in pathogens (M. tuberculosis) using PROM, and designing multi combination therapeutics for reducing antibiotic resistance using INDIGO.