I study the percolation model, which is the model for long-range connectivity formation in systems that include polymerization, flow in porous media, cell-phone signals, and the spread of diseases. I study this on random graphs and other networks, and on regular lattices in various dimensions, using computer simulation and analysis. We have also worked on developing new algorithms. I am currently applying these methods to studying the COVID-19 pandemic, which also requires comparison with some of the vast amount of data that is available from every part of the world.

My research is mainly concerned with theoretical and computational hydrodynamics, with applications in nonlinear ocean wave prediction and dynamics, wave-body interactions, and wave turbulence theory. I have incorporated the data science tools in my research, especially in the following two projects:

1. Quantification of statistics of extreme ship motions in irregular wave fields: In this project, we propose a new computational framework that directly resolves the statistics (and causal factors) of extreme ship responses in a nonlinear wave field. The development leverages a range of physics and learning based approaches, including nonlinear wave simulations (potential flow), ship response simulations (e.g., CFD), dimension-reduction techniques, sequential sampling, Gaussian process regression (Kriging) and multi-fidelity methods. The key features of the new approach include (i) description of the stochastic wave field by a low-dimensional probabilistic parameter space, and (ii) use of minimum number of CFD simulations to provide most information for converged statistics of extreme motions.

2. Real-time wave prediction with data assimilation from radar measurements: In this project, we develop the real-time data assimilation algorithm adapted to the CPU-GPU hardware architecture, to reduce the uncertainties associated with radar measurement errors and environmental factors such as wind and current in the realistic ocean environment. Upon integration with advanced in-situ or remote wave sensing technology, the developed computational framework can provide heretofore unavailable real-time forecast capability for ocean waves.

Dr. Lee’s research in data science concerns biological questions in systems biology and network medicine by developing algorithms and models through a combination of statistical/machine learning, information theory, and network theory applied to multi-dimensional large-scale data. His projects have covered genomics, transcriptomics, proteomics, and metabolomics from yeast to mouse to human for integrative analysis of regulatory networks on multiple molecular levels, which also incorporates large-scale public databases such as GO for functional annotation, PDB for molecular structures, and PubChem and LINCS for drugs or small compounds. He previously carried out proteomics and metabolomics along with a computational derivation of dynamic protein complexes for IL-3 activation and cell cycle in murine pro-B cells (Lee et al., Cell Reports 2017), for which he developed integrative analytical tools using diverse approaches from machine learning and network theory. His ongoing interests in methodology include machine/deep learning and topological Kolmogorov-Sinai entropy-based network theory, which are applied to (1) multi-level dynamic regulatory networks in immune response, cell cycle, and cancer metabolism and (2) mass spectrometry-based omics data analysis.

Jeffrey C. Lagarias is the Harold Mead Stark Collegiate Professor of Mathematics in the College of Literature, Science, and the Arts at the University of Michigan, Ann Arbor.

Prof. Lagarias’ research interests are diverse. His initial training was in analytic and algebraic number theory. After receiving his PhD in 1974, he worked at Bell Laboratories and AT &T Labs until 2003, on problems in many pure and applied fields. Besides number theory, Prof. Lagarias has made contributions in harmonic analysis (wavelets and fractals), mathematical optimization (interior point methods), discrete geometry (tilings and quasicrystals), ergodic theory, low-dimensional topology (complexity of unknotting), and theoretical computer science.

At Michigan Prof. Lagarias has been active in the number theory group over the last few years, with additional work in other fields. His last 25 postings on the arXiv were in: Number Theory (16), Dynamical Systems (3), Classical Analysis and ODE?s (3), Metric Geometry (1), Optimization and Control (1), Spectral Theory (1). His doctoral students typically work on their own topics. Some have worked in topics in number theory: integer factorial ratios, character sum estimates, Diophantine equations with two separated variables; Others have worked in topics in discrete geometry: packings of regular tetrahedra, rigidity of circle configurations.