Peter Song

Peter Song

By |

My research interests lie in two major fields: In the field of statistical methodology, my interests include data integration, distributed inference, federated learning and meta learning, high-dimensional statistics, mixed integer optimization, statistical machine learning, and spatiotemporal modeling. In the field of empirical study, my interests include bioinformatics, biological aging, epigenetics, environmental health sciences, nephrology, nutritional sciences, obesity, and statistical genetics.

Dimitra Panagou

Dimitra Panagou

By |

Dimitra Panagou’s research lies in the areas of multi-agent systems and control, with applications in multi-robot/vehicle systems. She is particularly interested in establishing safety and resilience against adversity and uncertainty for multi-robot/vehicle systems using techniques from (networked) control theory, estimation theory, and machine learning.

Anthony Bloch

Anthony Bloch

By |

My research interests include : Hamiltonian and Lagrangian mechanics, gradient flows on manifolds, integrable systems stability, the motion of mechanical systems with constraints, the relationship between continuous and discrete flows, nonlinear and optimal control and the control of quantum systems. I also interested in data-guided control and in particular the dynamics and control
of networks and systems arising from large sets, particularly in biological applications.

Tanya Rosenblat

Tanya Rosenblat

By |

My main research interest lies in experimental economics, social networks and social learning. I am particularly interested in how people aggregate information from social networks and news sources and form posterior beliefs. I use regression techniques to uncover causal relationships as well as classification to reduce the dimensionality of data.

Some of my recent research looks at how people update beliefs when they derive direct utility from beliefs. This occurs, for example, when people receive feedback on their ability. They often seem to weigh positive information more strongly than negative information. I am also interested in understanding differences between statistical and anecdotal reasoning. Under statistical reasoning, people have known objectives and they update beliefs through Bayes’ rule. Under anecdotal reasoning, people recall anecdotes that are relevant for forming a belief about a new objective that has not been encountered before. In these situations, memory recall and recognition are important to understand the formation of beliefs.

Mean absolute belief revisions by prior belief in response to positive/negative information. Prior deciles are ordered in increasing (decreasing) order for positive (negative) information. Bayesian should have equal responses.

Photograph of Nate Sanders

Nate Sanders

By |

My research interests are broad, but generally center on the causes and consequences of biodiversity loss at local, regional, and global scales with an explicit focus on global change drivers. Our work has been published in Science, Nature, Science Advances, Global Change Biology, PNAS, AREES, TREE, and Ecology Letters among other journals. We are especially interested in using AI and machine learning to explore broad-scale patterns of biodiversity and phenotypic variation, mostly in ants.

Stefanus Jasin

By |

My research focus the application and development of new algorithms for solving complex business analytics problems. Applications vary from revenue management, dynamic pricing, marketing analytics, to retail logistics. In terms of methodology, I use a combination of operations research and machine learning/online optimization techniques.

 

Cong Shi

By |

Cong Shi is an associate professor in the Department of Industrial and Operations Engineering at the University of Michigan College of Engineering. His primary research interest lies in developing efficient and provably-good data-driven algorithms for operations management models, including supply chain management, revenue management, service operations, and human-robot interactions. He received his Ph.D. in Operations Research at MIT in 2012, and his B.S. in Mathematics from the National University of Singapore in 2007.

Brendan Kochunas

By |

Dr. Kochunas’s research focus is on the next generation of numerical methods and parallel algorithms for high fidelity computational reactor physics and how to leverage these capabilities to develop digital twins. His group’s areas of expertise include neutron transport, nuclide transmutation, multi-physics, parallel programming, and HPC architectures. The Nuclear Reactor Analysis and Methods (NURAM) group is also developing techniques that integrate data-driven methods with conventional approaches in numerical analysis to produce “hybrid models” for accurate, real-time modeling applications. This is embodied by his recent efforts to combine high-fidelity simulation results simulation models in virtual reality through the Virtual Ford Nuclear Reactor.

Relationship of concepts for the Digital Model, Digital Shadow, Digital Twin, and the Physical Asset using images and models of the Ford Nuclear Reactor as an example. Large arrows represent automated information exchange and small arrows represent manual data exchange.

Elizabeth F. S. Roberts

By |

“Neighborhood Environments as Socio-Techno-bio Systems: Water Quality, Public Trust, and Health in Mexico City (NESTSMX)” is an NSF-funded multi-year collaborative interdisciplinary project that brings together experts in environmental engineering, anthropology, and environmental health from the University of Michigan and the Instituto Nacional de Salud Pública. The PI is Elizabeth Roberts (anthropology), and the co-PIs are Brisa N. Sánchez (biostatistics), Martha M Téllez-Rojo (public health), Branko Kerkez (environmental engineering), and Krista Rule Wigginton (civil and environmental engineering). Our overarching goal for NESTSMX is to develop methods for understanding neighborhoods as “socio-techno-bio systems” and to understand how these systems relate to people’s trust in (or distrust of) their water. In the process, we will collectively contribute to our respective fields of study while we learn how to merge efforts from different disciplinary backgrounds.
NESTSMX works with families living in Mexico City, that participate in an ongoing longitudinal birth-cohort chemical-exposure study (ELEMENT (Early Life Exposures in Mexico to ENvironmental Toxicants, U-M School of Public Health). Our research involves ethnography and environmental engineering fieldwork which we will combine with biomarker data previously gathered by ELEMENT. Our focus will be on the infrastructures and social structures that move water in and out of neighborhoods, households, and bodies.

Testing Real-Time Domestic Water Sensors in Mexico City

Testing Real-Time Domestic Water Sensors in Mexico City