Timothy C. Guetterman

By |

Timothy C. Guetterman is a methodologist focused on research design and mixed methods research. His research interests include advancing rigorous methods of quantitative, qualitative, and mixed methods research, particularly strategies for intersecting and integrating qualitative and quantitative research. Tim is the PI of NIH-funded research that uses quantitative, qualitative, and mixed methods research to investigate the use of virtual human technology in health, education, and assessment. He has been applying natural language processing techniques to the analysis of mixed methods datasets. He also conducts research on teaching, learning, and developing research methods capacity as Co-PI of a William T. Grant Foundation qualitative and mixed methods research capacity building grant and in his role as evaluator and Co-I for the NIH-funded Mixed Methods Research Training Program for the Health Sciences. Tim has extensive professional experience conducting program evaluation with a focus on educational and healthcare programs.

William J. Gehring

By |

Williams is a Professor of Psychology, University of Michigan, Ann Arbor. His academic interests span two lines of teaching and research: his longest-running line of research concerns the brain processes involved in detecting errors, including how those processes affect anxiety disorders and children’s executive function. More recently, he has focused on higher education, teaching first-year undergraduate students evidence-based principles for learning and finding purpose in college. His research in this area uses institutional data to understand the factors within the college and the curriculum that promote or hinder academic success.

Halil Bisgin

By |

My research is focused on a wide range of topics from computational social sciences to bioinformatics where I do pattern recognition, perform data analysis, and build prediction models. At the core of my effort, there lie machine learning methods by which I have been trying to address problems related to social networks, opinion mining, biomarker discovery, pharmacovigilance, drug repositioning, security analytics, genomics, food contamination, and concussion recovery. I’m particularly interested in and eager to collaborate on cyber security aspect of social media analytics that includes but not limited to misinformation, bots, and fake news. In addition, I’m still pursuing opportunities in bioinformatics, especially about next generation sequencing analysis that can be also leveraged for phenotype predictions by using machine learning methods.

A typical pipeline for developing and evaluating a prediction models to identify malicious Android mobile apps in the market

Libby Hemphill

By |

Dr. Hemphill studies conversations in social media and aims to promote just access to social media spaces and their data. She uses computational approaches to modeling political topics, predicting and addressing toxicity in online discussions, and tracing linguistic adaptations among extremists. She also studies digital data curation and is especially interested in ways to measure and model data reuse so that we can make informed decisions about how to allocate data resources.

Christopher Fariss

By |

My core research focuses on the politics and measurement of human rights, discrimination, violence, and repression. I use computational methods to understand why governments around the world torture, maim, and kill individuals within their jurisdiction and the processes monitors use to observe and document these abuses. Other projects cover a broad array of themes but share a focus on computationally intensive methods and research design. These methodological tools, essential for analyzing data at massive scale, open up new insights into the micro-foundations of state repression and the politics of measurement.

People rely more on strong ties for job help in countries with greater inequality. Coefficients from 55 regressions of job transmission on tie strength are compared to measures of inequality (Gini coefficient), mean income per capita, and population, all measured in 2013. Gray lines indicate 95% confidence regions from 1000 simulated regressions that incorporate uncertainty in the country-level regressions (see below for more details). In each simulated regression we draw each country point from the distribution of regression coefficients implied by the estimate and standard error for that country and measure of tie strength. P values indicate the simulated probability that there is no relationship between tie strength and the other variable. Laura K. Gee, Jason J. Jones, Christopher J. Fariss, Moira Burke, and James H. Fowler. “The Paradox of Weak Ties in 55 Countries” Journal of Economic Behavior & Organization 133:362-372 (January 2017) DOI:10.1016/j.jebo.2016.12.004

Nicole Seiberlich

By |

My research involves developing novel data collection strategies and image reconstruction techniques for Magnetic Resonance Imaging. In order to accelerate data collection, we take advantage of features of MRI data, including sparsity, spatiotemporal correlations, and adherence to underlying physics; each of these properties can be leveraged to reduce the amount of data required to generate an image and thus speed up imaging time. We also seek to understand what image information is essential for radiologists in order to optimize MRI data collection and personalize the imaging protocol for each patient. We deploy machine learning algorithms and optimization techniques in each of these projects. In some of our work, we can generate the data that we need to train and test our algorithms using numerical simulations. In other portions, we seek to utilize clinical images, prospectively collected MRI data, or MRI protocol information in order to refine our techniques.

We seek to develop technologies like cardiac Magnetic Resonance Fingerprinting (cMRF), which can be used to efficiently collect multiple forms of information to distinguish healthy and diseased tissue using MRI. By using rapid methods like cMRF, quantitative data describing disease processes can be gathered quickly, enabling more and sicker patients can be assessed via MRI. These data, collected from many patients over time, can also be used to further refine MRI technologies for the assessment of specific diseases in a tailored, patient-specific manner.

Andrei Boutyline

By |

Cultural systems are fundamentally structural phenomena, defined by patterns of relations between elements of public representations and individual behaviors and cognitions. However, because such systems are difficult to capture with traditional empirical approaches, they usually remain understudied. In my work, I draw on network analysis, statistics, and computer science to create novel approaches to such analyses, and on cognitive science to theorize the objects of these investigations. Broader questions that interest me are: how are different cultural elements interrelated with one another? What is the relationship between public cultural representations and individual cognition and behavior? And how can we capture the structure of these interrelationships across large social and time scales? Methodologically, I am currently focused no developing applications of word embeddings and other natural language processing methods to sociological questions about cultural change.

Changing gender connotations of intelligence and studiousness throughout the latter half of the 20th century measured using word embeddings. Intelligence gained a masculine gender coding just as studiousness gained a masculine one. Scores are z-scored average cosine similarities between sets of keywords and a gender dimension. Data source: Corpus of Historical American English.

Kentaro Toyama

By |

Kentaro Toyama is W. K. Kellogg Professor of Community Information at the University of Michigan School of Information and a fellow of the Dalai Lama Center for Ethics and Transformative Values at MIT. He is the author of “Geek Heresy: Rescuing Social Change from the Cult of Technology.” Toyama conducts interdisciplinary research to understand how the world’s low-income communities interact with digital technology and to invent new ways for technology to support their socio-economic development, including computer simulations of complex systems for policy-making. Previously, Toyama did research in artificial intelligence, computer vision, and human-computer interaction at Microsoft and taught mathematics at Ashesi University in Ghana.

Interacting with children at a Seva Mandir school in Rajasthan, India.