Liu Liu

By |

My primary career interest is making new discoveries through creative thinking and innovative investigations. My long term research interests in the molecular mechanisms of heart regeneration to effectively prolong and improve the lives of heart patients, particularly in the development of a comprehensive understanding of post-translational/epigenetics regulation for cardiac reprogramming based heart therapy. I am developing a novel concept for a post-translational modification (PTM) code that is applicable across different proteins. I am utilizing computational methods to gain insights into the functional implications of PTMs that transcend protein boundaries.

Liyue Shen

By |

My research interest is in Biomedical AI, which lies in the interdisciplinary areas of machine learning, computer vision, signal and image processing, medical image analysis, biomedical imaging, and data science. I am particularly interested in developing efficient and reliable AI/ML-driven computational methods for biomedical imaging and informatics to tackle real-world biomedicine and healthcare problems, including but not limited to, personalized cancer treatment, and precision medicine.

In the field of AI/ML, we focus on developing reliable, generalizable, data-efficient machine learning and deep learning algorithms by exploiting prior knowledge from the physical world, such as: Prior-integrated learning for data-efficient ML Uncertainty awareness for trustworthy ML. In the field of Biomedicine, we focus on developing efficient computational methods for biomedical imaging and biomedical data analysis to advance precision medicine and personalized treatment, such as: Multi-modal data analysis for decision making Clinical trial translation for real-world deployment.

In the field of AI/ML, we focus on developing reliable, generalizable, data-efficient machine learning and deep learning algorithms by exploiting prior knowledge from the physical world, such as: Prior-integrated learning for data-efficient ML Uncertainty awareness for trustworthy ML. In the field of Biomedicine, we focus on developing efficient computational methods for biomedical imaging and biomedical data analysis to advance precision medicine and personalized treatment, such as: Multi-modal data analysis for decision making Clinical trial translation for real-world deployment.

What are some of your most interesting projects?

Our goal is to develop efficient and reliable AI/ML-driven computational methods for biomedical imaging and informatics to tackle real-world biomedicine and healthcare problems. We hope the technology advancement in AI and ML can help us to better understand human health in different levels. Specifically, we develop Biomedical AI in different parts, including:
– AI in Biomedical Imaging: develop novel machine learning algorithms to advance biomedical imaging techniques for obtaining computational images with improved quality. Specifically, relevant topics include but not limited to: Implicit neural representation learning; Diffusion model / Score-based generative model; Physics-aware / Geometry-informed deep learning.
– AI in Biomedical Image Processing and Bioinformatics: develop robust and efficient machine learning algorithms to extract useful information from multimodal biomedical data for assisting decision making and precision medicine. Specifically, relevant topics include but not limited to: Multimodal representation learning; Robust learning with missing data / noisy labeling; Data-efficient learning such as self- / un- / semi-supervised learning with limited data / labels.

How did you end up where you are today?

I am an assistant professor in the ECE Division of the Electrical Engineering and Computer Science department of the College of Engineering, University of Michigan – Ann Arbor. Before this, I received my Ph.D. degree from the Department of Electrical Engineering, Stanford University. I obtained her Bachelor’s degree in Electronic Engineering from Tsinghua University in 2016. I is the recipient of Stanford Bio-X Bowes Graduate Student Fellowship (2019-2022), and was selected as the Rising Star in EECS by MIT and the Rising Star in Data Science by The University of Chicago in 2021.

Corey Lester

Corey Lester

By |

I am an expert in the use of artificial intelligence and data science applications to improve medication use. My work focuses on solving medication-related problems with health data through measurement of their effects on human work and decision-making.

Runzi Wang

Runzi Wang

By |

Runzi Wang is a transdisciplinary researcher who studies change in natural and urban environments across space and over time, with the objective of driving positive change with ecological planning and design strategies. Combining technologies such as big data, machine learning, remote sensing, and spatial statistics, her primary research explores how land cover change and urban development pattern influence stream water quality and stormwater quality at the watershed basis, together with various environmental, climatic, and sociocultural factors. By enhancing the interpretability of machine learning in its application to landscape architecture, the most innovative part of her research is to uncover the nonlinear, interacted relationships between environmental, technological, and sociocultural dimensions of landscape systems.

What are some of your most interesting projects?

  1. I conducted the first continental-scale urban stream water quality study funded by MIDAS. We applied geospatial analysis to investigate the characteristics of the built environment (e.g., building footprint, street length, land use spatial pattern) associated with urban stream water quality, the social inequities regarding exposure to stream water contamination, as well as the spatial variations in the above processes. We developed data integration protocols for data from remote sensing products, in-situ observations, and the US Census Bureau. Using Bayesian hierarchical models, we concluded that watersheds with a higher percentage of minorities are associated with higher nutrient pollution, with the relationship being more significant in the American Northwest.
  2. I investigated how land use planning and best management practices mitigated climate change effects on Lake Erie’s water quality. With the integration of longitudinal watershed land cover, agricultural, and climatic data from 1985-2017, we found that no-tillage and reduced tillage management were effective mitigation strategies that could decrease water quality sensitivity to climate change. We plan to advance this work by fusing remote sensing-based bloom detection and process-based simulation to investigate how climate change, land cover change, and anthropogenic activities will impact the eutrophication of Lake Erie.

How did you end up where you are today?

I have a highly interdisciplinary background, receiving training in architecture, landscape architecture, urban planning, statistics, hydrology and water quality, and broader social science topics. This forms my research topic to study the relationships between people, land, and water. Specifically, I study the interconnectedness between people living in the watershed, the land use and urban form of the watershed’s built form, the resulting water quality conditions, and the ecosystem services urban streams provide for people. This background also leverages many different methodologies in my work, including data science, hydrological models, social science methods, and so on. In addition, the most important thing about my research journey is that I have a few excellent friends/researchers who help me a lot on my way and make my research life inspiring and delightful most of the time.

Ken Resnicow

Ken Resnicow

By |

Dr. Resnicow studies tailored behavior change interventions, natural language processing of clinical encounters, analyses of large datasets related to obesity and other chronic diseases, novel designs such as SMART, MOST, and reinforcement learning, and applied complex systems and chaos theory in behavior change.

Justine Zhang

By |

I develop computational methods to study conversations. I am interested in study how conversationalists use language to do things with and to each other, and how they navigate often-challenging interactions. I’m particularly interested in settings where people have conversations on behalf of institutions, and in analyzing conversations as a window into how these institutions work in practice. Drawing on techniques from natural language processing, computational social science, and causal inference, I examine large datasets containing conversation transcripts. Past and present work has considered settings such as political discourse, mental health counseling, and law enforcement.

Additional Information

What are some of your most interesting projects?

How did you end up where you are today?

What is the most significant scientific contribution you would like to make?

What makes you excited about your data science and AI research?

What are 1-3 interesting facts about yourself?

Eric Swanson

Eric Swanson

By |

Most of my current work is in social and political philosophy of language and metaethics. It pays special attention to relationships between language, context, and ideology, to the particularities of speech situations, and to the norms governing language use. I’m especially interested in how the force of language can go beyond the information that is apparent to or shared amongst discourse participants.

Recently I’ve been thinking about how the above makes trouble (a.k.a. interesting but sometimes scary new things to think about) for work on artificial intelligence, artificial general intelligence, and automated content moderation and promotion.

I have continuing interests in the interfaces between language and epistemology (epistemic modals and conditionals), language and metaphysics (causal talk and the logic of causation), language and ethics (deontic modals), and on two frameworks for linguistic theorizing that bear on the above—‘constraint semantics’ and ‘ordering super­valua­tionism.’

Additional Information

What are some of your most interesting projects?

One of my recent papers argues that not saying a particular thing can generate a conversational implicature — a means of conveying a message without explicitly committing oneself to that message. Debates about such ‘omissive implicatures’ are especially common in online language use.

How did you end up where you are today?

What is the most significant scientific contribution you would like to make?

What makes you excited about your data science and AI research?

Contemporary work in AI interacts with countless interesting and pressing philosophical questions.

What are 1-3 interesting facts about yourself?

Joyce Chai

Joyce Chai

By |

My research interests are in the area of natural language processing, situated dialogue agents, and artificial intelligence. I’m particularly interested in language processing that is sensorimotor-grounded, pragmatically-rich, and cognitively-motivated. My current work explores the intersection of language, vision, and robotics to facilitate situated communication with embodied agents and applies different types of data (e.g., capturing human behaviors in communication, perception, and, action) to advance core intelligence of AI.

Vineet Kamat

Vineet Kamat

By |

My group conducts research in automation and robotics to improve work processes in the construction, operation, and maintenance of civil infrastructure and the built environment. Our research has developed several licensable technologies that include visualization, perception, and modeling techniques to help on-site construction robots with autonomous decision making. We are particularly interested in exploring new methods for enabling collaborative work strategies for human-robot teams jointly performing field construction work. In addition, we are also interested in exploring methods to integrate data to support semi-autonomous mobility for people with physical disabilities in the urban built environment.

Data-Driven Co-Robotic Field Construction Work

Ryan Stidham

Ryan Stidham

By |

Dr. Stidham is an academic gastroenterologist specializing in medical image analysis in Crohn’s disease, ulcerative colitis, inflammatory bowel diseases (IBD), and gastroenterology conditions at large. His research is focused on developing new measures of disease activity to power automated care models and clinical decision support systems in IBD with a focus on medical image analysis and new technology development. His work has focused on automation of existing IBD disease measures that relying on colonoscopy, CT, MRI, and ultrasound using neural networks and novel image analysis approaches. Dr. Stidham is also developing new measures of disease activity, inflammation, and fibrosis that leverage advances in image segmentation, transfer learning, signals analysis, and fuzzy network approaches as well as collaborating for development of new image acquisition modalities. Finally, his team has active projects in collaboration with the Department of Learning Health Sciences for merging data from clinical office notes with imaging data using computational linguistics approaches. His work has been supported by the NIH, DOD, NSF, and several large investigator-initiated industry collaborations.