Peter Song

Peter Song

By |

My research interests lie in two major fields: In the field of statistical methodology, my interests include data integration, distributed inference, federated learning and meta learning, high-dimensional statistics, mixed integer optimization, statistical machine learning, and spatiotemporal modeling. In the field of empirical study, my interests include bioinformatics, biological aging, epigenetics, environmental health sciences, nephrology, nutritional sciences, obesity, and statistical genetics.

Mariel Lavieri

Mariel Lavieri

By |

Dr. Lavieri’s group is focused on creating novel modeling frameworks that utilize the rich datasets available in healthcare to personalize screening, monitoring, and treatment decisions of chronic disease patients. Her group has also created models for health workforce and capacity planning.

Sally Oey

Sally Oey

By |

Sally Oey’s group is studying massive star populations and the escape of ionizing radiation from starburst galaxies and super star clusters. The group is at the forefront of establishing a new paradigm for massive-star feedback, where superwinds from compact young star clusters fail to launch. Members have used numerical simulations and image processing techniques to investigate such conditions for allowing ionizing radiation to penetrate the dense gas in star-forming clouds and the interstellar medium in “green pea” galaxies and resolved nearby starbursts. The ionizing radiation may originate from massive binaries and their products, thus group members are carrying out data mining of observational surveys and binary population synthesis models to study how binarity manifests in stellar populations.

Leopoldo Pando Zayas

Leopoldo Pando Zayas

By |

My main research interest is in quantum gravity. Various aspects of quantum information and quantum chaotic systems have proven to be essential in recent developments.

Thuy Le

Thuy Le

By |

Dr. Le is an assistant research scientist at the University of Michigan Department of Health Management and Policy. Dr Le is also a member of the UM/Georgetown TCORS Center for the Assessment of Tobacco Regulations (CAsToR). Dr. Le is interested in mathematical modeling for cancer- and tobacco-related problems, and machine-learning applications in tobacco regulatory science. Dr. Le has developed mathematical models to evaluate the benefits and harms of breast cancer mammography and predict the number of white blood cells during acute lymphoblastic maintenance therapy in children. Dr. Le’s recent work focuses on employing mathematical models to quantify the burden of menthol cigarettes on public health and estimate the smoking cessation rate. Dr. Le is working on applying machine learning techniques to predict and understand smoking behaviors.

Sabine Loos

Sabine Loos

By |

My research focuses on natural hazards and disaster information, everything from understanding where disaster data comes from, how it’s used, and its implications to design improved disaster information systems that prioritize the human experience and lead to more effective and equitable outcomes.

My lab takes a user-centered and data-driven approach. We aim to understand user needs and the effect of data on users’ decisions through qualitative research, such as focus groups or workshops. We then design new information systems through geospatial/GIS analysis, risk analysis, and statistical modeling techniques. We often work with earth observation, sensor, and survey data. We consider various aspects of disaster information, whether it be the hazard, its physical impacts, its social impacts, or a combination of the three.

I also focus on the communication of information, through data visualization techniques, and host a Risk and Resilience DAT/Artathon to build data visualization capacity for early career professionals.

Geospatial model for predicting inequities in recovery from the 2015 Nepal earthquake

Photograph of Alison Davis Rabosky

Alison Davis Rabosky

By |

Our research group studies how and why an organism’s traits (“phenotypes”) evolve in natural populations. Explaining the mechanisms that generate and regulate patterns of phenotypic diversity is a major goal of evolutionary biology: why do we see rapid shifts to strikingly new and distinct character states, and how stable are these evolutionary transitions across space and time? To answer these questions, we generate and analyze high-throughput “big data” on both genomes and phenotypes across the 18,000 species of reptiles and amphibians across the globe. Then, we use the statistical tools of phylogenetic comparative analysis, geometric morphometrics of 3D anatomy generated from CT scans, and genome annotation and comparative transcriptomics to understand the integrated trait correlations that create complex phenotypes. Currently, we are using machine learning and neural networks to study the color patterns of animals vouchered into biodiversity collections and test hypotheses about the ecological causes and evolutionary consequences of phenotypic innovation. We are especially passionate about the effective and accurate visualization of large-scale multidimensional datasets, and we prioritize training in both best practices and new innovations in quantitative data display.

Photograph of Nate Sanders

Nate Sanders

By |

My research interests are broad, but generally center on the causes and consequences of biodiversity loss at local, regional, and global scales with an explicit focus on global change drivers. Our work has been published in Science, Nature, Science Advances, Global Change Biology, PNAS, AREES, TREE, and Ecology Letters among other journals. We are especially interested in using AI and machine learning to explore broad-scale patterns of biodiversity and phenotypic variation, mostly in ants.

Xiaoquan William Wen

By |

Xiaoquan (William) Wen is an Associate Professor of Biostatistics. He received his PhD in Statistics from the University of Chicago in 2011 and joined the faculty at the University of Michigan in the same year. His research centers on developing Bayesian and computational statistical methods to answer interesting scientific questions arising from genetics and genomics.

In the applied field,  he is  particularly interested in seeking statistically sound and computationally efficient solutions to scientific problems in the areas of genetics and functional genomics.
Quantifying tissue-specific expression quantitative trait loci (eQTLs) via Bayesian model comparison

Quantifying tissue-specific expression quantitative trait loci (eQTLs) via Bayesian model comparison

Michael Craig

By |

Michael is an Assistant Professor of Energy Systems at the University of Michigan’s School for Environment and Sustainability and PI of the ASSET Lab. He researches how to equitably reduce global and local environmental impacts of energy systems while making those systems robust to future climate change. His research advances energy system models to address new challenges driven by decarbonization, climate adaptation, and equity objectives. He then applies these models to real-world systems to generate decision-relevant insights that account for engineering, economic, climatic, and policy features. His energy system models leverage optimization and simulation methods, depending on the problem at hand. Applying these models to climate mitigation or adaptation in real-world systems often runs into computational limits, which he overcomes through clustering, sampling, and other data reduction algorithms. His current interdisciplinary collaborations include climate scientists, hydrologists, economists, urban planners, epidemiologists, and diverse engineers.