David Kwabi

By |

We study and develop electrochemical devices containing organic materials for applications in grid energy storage and chemical separations (e.g., CO2 capture and nitrogen recovery). A critical aspect of our work involves discerning the impact of chemical reactions as well as mass and charge transport processes on device-level performance metrics. To accomplish this goal, we often conduct spectroscopic measurements of electrochemical systems while they are in operation. We apply a variety of mathematical modeling techniques to the spectroscopic data, such as multivariate curve resolution and Bayesian inference/model selection, to glean useful information about molecular transformation mechanisms and kinetics. These insights are informing closed-loop discovery of new and better-performing materials.

Angela Violi

Angela Violi

By |

The Violi Lab carries out cross-disciplinary research at the intersection of nanoscience and data science. By integrating machine learning techniques with molecular simulations, the team strives to unravel fundamental scientific principles while tackling practical problems in material science, healthcare, and environmental sustainability. Their methodological toolkit encompasses various cutting-edge approaches: active learning and Bayesian experimental design to improve sample efficiency; advanced gradient boosting techniques for predictive modeling; specialized neural networks to decode protein-nanoparticle interactions; and Lasso-like algorithms for feature selection and regularization. Through this integrated approach, the lab aims to make significant contributions to both scientific understanding and technological innovation.

Peter Reich

By |

Reich conducts global change research on plants, soils, ecosystems and people across a range of scales. His work links fundamental physiology with community dynamics and ecosystem structure and function, from the patch to the globe, within the context of the myriad of global environmental challenges that face us. This includes studying the effects on natural and human ecosystems of rising CO2 and associated climate change, biodiversity loss, and wildfire. This research involves a variety of tools and approaches (long-term experiments, observations, global data compilations, statistical and simulation models), a diverse set of ecosystems (boreal forest, temperate grassland, and more), and a range of scales (local, regional, global). The overarching goal is to understand what we humans are doing to nature in order to help orchestrate a shift towards a nature-forward prioritization that will in turn support and sustain human society.

I studied physics and creative writing and became interested in the fate of our environment; over time I began using tools from each focal area to advance ecological science in a changing world

Cheng Li

By |

My research focuses on developing advanced numerical models and computational tools to enhance our understanding and prediction capabilities for both terrestrial and extraterrestrial climate systems. By leveraging the power of data science, I aim to unravel the complexities of atmospheric dynamics and climate processes on Earth, as well as on other planets such as Mars, Venus, and Jupiter.

My approach involves the integration of large-scale datasets, including satellite observations and ground-based measurements, with statistical methods and sophisticated machine learning algorithms including vision-based large models. This enables me to extract meaningful insights and improve the accuracy of climate models, which are crucial for weather forecasting, climate change projections, and planetary exploration.

Fan Bu

By |

I am broadly interested in Bayesian and computational statistics for analyzing large-scale and complex data. I am particularly interested in spatio-temporal statistics, network inference, infectious disease models, and distributed learning. My methodological research has been motivated by applications in public health, observational healthcare studies, computational social science, and sports sciences.

I came from a math background but studied statistics in order to become a sports analyst (yes, Moneyball!). Throughout my PhD and postdoc training, I grew a strong appreciation for social sciences (how people behave and interact) and health sciences (how to provide high-quality healthcare for everyone). I see data science as the field to help us make sense of complex data that arise from our daily life and scientific endeavors, by building reliable and reproducible frameworks that transform data to evidence and then to scientific findings and decisions.

Terra Sztain

By |

The Sztain research group is broadly focused on computer-aided molecular design, intersecting fields of chemistry, physics, biology, and computer science. Ongoing projects involve integrating experimental data and enhanced sampling molecular dynamics simulations to improve computational models for allosteric inhibitor design and protein engineering.

Dani Jones

Dani Jones

By |

Dani Jones’ research program drives CIGLR’s portfolio of research in data science, machine learning, and artificial intelligence, as applied to physical limnology, weather forecasting, water cycle predictions, ecology, and observing system design. This research program aims is to advance societal adaptations to the effects of climate change, including flooding of coasts, rivers, and cities. Dani’s background is in physical oceanography, with specific expertise in adjoint modeling for comprehensive sensitivity analysis and unsupervised classification for data analysis, mostly applied to the North Atlantic and Southern Ocean. In Dani’s current role, they are establishing CIGLR’s new Artificial Intelligence Laboratory, leveraging the institute’s extensive observing assets, datasets, modeling capacity, interdisciplinary expertise, and numerous regional and international partnerships.

Jacob Allgeier

By |

My goal as an ecologist is to apply ecological theory to help solve real-world conservation issues. Specifically, I seek to identify the mechanisms by which behavioral, population, and community dynamics mediate nutrient and energy pathways. The objective is to improve our ability to predict ecological outcomes, and enhance conservation efficacy such as the sustainability of ecosystem services (e.g., fisheries). Much of this research takes place in tropical coastal ecosystems (mangroves, seagrass beds, and coral reefs) where I study gradients created by anthropogenic impacts to test theory directly within the context of environmental change and biodiversity loss. My research is broad and multifaceted, and includes a combination of extensive field-based research and computational analyses.The type of data we collect in the field has endless potential to be better understood through collaborations with MIDAS. I rely on (and very much enjoy) integrative collaborations across a variety of fields.

What are some of your most interesting projects?

We have recently generated one of the most extensive high-resolution dataset of fish movement in any system that we are aware of. We are using these data to understand the role of consumers in moving nutrient and energy through these ecosystems, and also to better understand the relative ecological importance of individual-level vs species-level variation.

What is the most significant scientific contribution you would like to make?

I would like to improve our ability to predict fish production in tropical coastal ecosystems to improve food security. I would also like to help improve our ability to manage seagrass ecosystems to maximize carbon sequestration and storage.

What makes you excited about your data science and AI research?

A central goal of my lab is to collect extremely high-end and extensive empirical data such that it can inform models that help us forecast ecological processes at the scales of entire ecosystems. We are currently using a suite of techniques to do so, including the use of individual-based modeling in particular. The type of data we are generating is absolutely ripe for being used with high-power data science and AI research. I honestly believe the applications are endless and would be extremely excited to team up with folks to build on these exciting possibilities.

What are some interesting facts about yourself?

Backpacking and woodworking are how I unwind. I love being outside, and I love doing field work.

Jacob Underwater

Studying our artificial reefs in Haiti

Irina Gaynanova

By |

Dr. Gaynanova’s research focuses on the development of statistical methods for analysis of modern high-dimensional biomedical data. Her methodological interests are in data integration, machine learning and high-dimensional statistics, motivated by challenges arising in analyses of multi-omics data (e.g., RNASeq, metabolomics, micribiome) and data from wearable devices (continuous glucose monitors, ambulatory blood pressure monitors, activity trackers).Dr. Gaynanova’s research has been funded by the National Science Foundation, and recognized with a David P. Byar Young Investigator Award and an NSF CAREER Award. She currently serves as an Associate Editor for Journal of the American Statistical Association, Biometrika and Data Science in Science.

Tian An Wong

By |

Analysis of policing technology and police data, including impact assessment of surveillance technology, media sentiment analysis, and fatal police violence. Methods include topological data analysis, natural language processing, multivariate time series analysis, difference-in-differences, and complex networks.

 


Research Highlights