Wenbo Sun

By |

Uncertainty quantification and decision making are increasingly demanded with the development of future technology in engineering and transportation systems. Among the uncertainty quantification problems, Dr. Wenbo Sun is particularly interested in statistical modelling of engineering system responses with considering the high dimensionality and complicated correlation structure, as well as quantifying the uncertainty from a variety of sources simultaneously, such as the inexactness of large-scale computer experiments, process variations, and measurement noises. He is also interested in data-driven decision making that is robust to the uncertainty. Specifically, he delivers methodologies for anomaly detection and system design optimization, which can be applied to manufacturing process monitoring, distracted driving detection, out-of-distribution object identification, vehicle safety design optimization, etc.

J.J. Prescott

By |

Broadly, I study legal decision making, including decisions related to crime and employment. I typically use large social science data bases, but also collect my own data using technology or surveys.

Yasser Aboelkassem

By |

In this project, we use multi-scale models coupled with machine learning algorithms to study cardiac electromechanic coupling. The approach spans out the molecular, Brownian, and Langevin dynamics of the contractile (sarcomeric proteins) mechanism of cardiac cells and up-to-the finite element analysis of the tissue and organ levels. In this work, a novel surrogate machine learning algorithm for the sarcomere contraction is developed. The model is trained and established using in-silico data-driven dynamic sampling procedures implemented using our previously derived myofilament mathematical models.

Multi-scale Machine Learning Modeling of Cardiac Electromechanics Coupling

Multi-scale Machine Learning Modeling of Cardiac Electromechanics Coupling

Matthew VanEseltine

By |

Dr. VanEseltine is a sociologist and data scientist working with large-scale administrative data for causal and policy analysis. His interests include studying the effects of scientific infrastructure, training, and initiatives, as well as the development of open, sustainable, and replicable systems for data construction, curation, and dissemination. As part of the Institute for Research on Innovation and Science (IRIS), he contributes to record linkage and data improvements in the research community releases of UMETRICS, a data system built from integrated records on federal award funding and spending from dozens of American universities. Dr. VanEseltine’s recent work includes studying the impacts of COVID-19 on academic research activity.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021

 

Ayumi Fujisaki-Manome

By |

Fujisaki-Manome’s research program aims to improve predictability of hazardous weather, ice, and lake/ocean events in cold regions in order to support preparedness and resilience in coastal communities, as well as improve the usability of their forecast products by working with stakeholders. The main question Fujisaki-Manome’s research aims to address is: what are the impacts of interactions between ice and oceans / ice and lakes on larger scale phenomena, such as climate, weather, storm surges, and sea/lake ice melting? Fujisaki-Manome primarily uses numerical geophysical modeling and machine learning to address the research question; and scientific findings from the research feed back into the models and improve their predictability. Her work has focused on applications to the Great Lakes, the Alaska’s coasts, Arctic Ocean, and the Sea of Okhotsk.

View MIDAS Faculty Research Pitch, Fall 2021

Areal fraction of ice cover in the Great Lakes in January 2018 modeled by the unstructured grid ice-hydrodynamic numerical model.

Carina Gronlund

By |

As an environmental epidemiologist and in collaboration with government and community partners, I study how social, economic, health, and built environment characteristics and/or air quality affect vulnerability to extreme heat and extreme precipitation. This research will help cities understand how to adapt to heat, heat waves, higher pollen levels, and heavy rainfall in a changing climate.

Sardar Ansari

By |

I build data science tools to address challenges in medicine and clinical care. Specifically, I apply signal processing, image processing and machine learning techniques, including deep convolutional and recurrent neural networks and natural language processing, to aid diagnosis, prognosis and treatment of patients with acute and chronic conditions. In addition, I conduct research on novel approaches to represent clinical data and combine supervised and unsupervised methods to improve model performance and reduce the labeling burden. Another active area of my research is design, implementation and utilization of novel wearable devices for non-invasive patient monitoring in hospital and at home. This includes integration of the information that is measured by wearables with the data available in the electronic health records, including medical codes, waveforms and images, among others. Another area of my research involves linear, non-linear and discrete optimization and queuing theory to build new solutions for healthcare logistic planning, including stochastic approximation methods to model complex systems such as dispatch policies for emergency systems with multi-server dispatches, variable server load, multiple priority levels, etc.

Kevin Bakker

By |

Kevin’s research is focused on to identifying and interpreting the mechanisms responsible for the complex dynamics we observe in ecological and epidemiological systems using data science and modeling approaches. He is primarily interested in emerging and endemic pathogens, such as SARS-CoV-2, influenza, vampire bat rabies, and a host of childhood infectious diseases such as chickenpox. He uses statistical and mechanistic models to fit, forecast, and occasionally back-cast expected disease dynamics under a host of conditions, such as vaccination or other control mechanisms.

Andrew Gronewold

By |

Dr. Andrew Gronewold, P.E., is an Associate Professor with the School for Environment and Sustainability (SEAS) at the University of Michigan. He also holds adjunct faculty appointments in the University of Michigan’s Department of Civil and Environmental Engineering, and the Department of Earth and Environmental Sciences. Dr. Gronewold conducts research through a range of hydrological science projects that explore methods for quantifying and communicating uncertainties arising within long-term hydrological monitoring networks and data, and incorporating those uncertainties into models and risk-based water resources management decisions. Much of his recent research has focused on monitoring, analyzing, and forecasting the long-term water budget and water levels of the Laurentian Great Lakes.