Sindhu Kutty

By |

My research centers on studying the interaction between abstract, theoretically sound probabilistic algorithms and human beings. One aspect of my research explores connections of Machine Learning to Crowdsourcing and Economics; focused in both cases on better understanding the aggregation process. As Machine Learning algorithms are used in making decisions that affect human lives, I am interested in evaluating the fairness of Machine Learning algorithms as well as exploring various paradigms of fairness. I study how these notions interact with more traditional performance metrics. My research in Computer Science Education focuses on developing and using evidence-based techniques in educating undergraduates in Machine Learning. To this end, I have developed a pilot summer program to introduce students to current Machine Learning research and enable them to make a more informed decision about what role they would like research to play in their future. I have also mentored (and continue to mentor) undergraduate students and work with students to produce publishable, and award-winning, undergraduate research.

Mithun Chakraborty

By |

My broad research interests are in multi-agent systems, computational economics and finance, and artificial intelligence. I apply techniques from algorithmic game theory, statistical machine learning, decision theory, etc. to a variety of problems at the intersection of the computational and social sciences. A major focus of my research has been the design and analysis of market-making algorithms for financial markets and, in particular, prediction markets — incentive-based mechanisms for aggregating data in the form of private beliefs about uncertain events (e.g. the outcome of an election) distributed among strategic agents. I use both analytical and simulation-based methods to investigate the impact of factors such as wealth, risk attitude, manipulative behavior, etc. on information aggregation in market ecosystems. Another line of work I am pursuing involves algorithms for allocating resources based on preference data collected from potential recipients, satisfying efficiency, fairness, and diversity criteria; my joint work on ethnicity quotas in Singapore public housing allocation deserves special mention in this vein. More recently, I have got involved in research on empirical game-theoretic analysis, a family of methods for building tractable models of complex, procedurally defined games from empirical/simulated payoff data and using them to reason about game outcomes.

Elliott Rouse

By |

My reserach group–theNeurobionics Lab–has two chief goals. Firstly, we seek to answer fundamental questions about human locomotion through a deeper understanding of how limb mechanics are felt and regulated by the nervous system. These properties are important because they govern how people respond to disturbances during gait, such as unexpectedly stepping on an obstacle, or carefully walking over uneven terrain. Moreover, the ability to regulate these mechanics is drastically impaired following neurological injury. As a result, impaired individuals fall more frequently, fatigue faster, and have abnormal gait patterns that inhibit daily life. The more we understand about how the brain controls the body during locomotion, the better we can assess, track, and treat the changes that occur following neurological injury.

The second mission of the group is to develop technologies that address the deficits that arise from neuropathologies and amputation. We leverage biomimetic design and control approaches to develop novel wearable robotic systems. Our intent is to not only address the locomotor deficits of these individuals, but also enable them to exceed the performance of their able-bodied counterparts. Our approach is unique: the biomechanical science that we discover is used to develop a new class of assistive technology. Through interdisciplinary, bidirectional feedback between science and engineering, the Neurobionics Lab conducts innovative work that will eventually impact the lives of the disabled.

Rahul Ladhania

By |

Rahul Ladhania is an Assistant Professor of Health Informatics in the Department of Health Management & Policy at the University of Michigan School of Public Health. He also has a secondary (courtesy) appointment with the Department of Biostatistics at SPH. Rahul’s research is in the area of causal inference and machine learning in public and behavioral health. A large body of his work focuses on estimating personalized treatment rules and heterogeneous effects of policy, digital and behavioral interventions on human behavior and health outcomes in complex experimental and observational settings using statistical machine learning methods.

Rahul co-leads the Machine Learning team at the Behavior Change For Good Initiative (Penn), where he is working on two `mega-studies’ (very large multi-arm randomized trials): one in partnership with a national fitness chain, to estimate the effects of behavioral interventions on promoting gym visit habit formation; and the other in partnership with two large Mid-Atlantic health systems and a national pharmacy chain, to estimate the effects of text-based interventions on increasing flu shot vaccination rates. His other projects involve partnerships with step-counting apps and mobile-based games to learn user behavior patterns, and design and evaluate interventions and their heterogeneous effects on user behavior.

Christiane Jablonowski

By |

Machine learning approaches and new data science algorithms are an emerging frontier for the atmospheric sciences. We explore whether newly developed physics-guided machine learning algorithms trained with atmospheric model data or observations can serve as emulators for physical processes in weather and climate models, such as the time-consuming solar radiation code, precipitation mechanisms, or the shallow or deep convection cloud schemes. A second, less aggressive approach is to utilize machine learning approaches for the estimation of uncertain parameters in the subgrid-scale physical parameterizations of atmospheric models. We use idealized weather and climate model configurations to intercompare the pros and cons of various machine learning algorithms, such as linear regression, random forests, boosted forests, artificial neural networks and deep neural networks with and without convolutions. In addition, we are interested in machine learning approaches to understand and foster the predictability of the climate system over subseasonal-to seasonal (weeks-to-months) time scales.

Bogdan I. Epureanu

By |

• Computational dynamics focused on nonlinear dynamics and finite elements (e.g., a new approach for forecasting bifurcations/tipping points in aeroelastic and ecological systems, new finite element methods for thin walled beams that leads to novel reduced order models).
• Modeling nonlinear phenomena and mechano-chemical processes in molecular motor dynamics, such as motor proteins, toward early detection of neurodegenerative diseases.
• Computational methods for robotics, manufacturing, modeling multi-body dynamics, developed methods for identifying limit cycle oscillations in large-dimensional (fluid) systems.
• Turbomachinery and aeroelasticity providing a better understanding of fundamental complex fluid dynamics and cutting-edge models for predicting, identifying and characterizing the response of blisks and flade systems through integrated experimental & computational approaches.
• Structural health monitoring & sensing providing increased sensibility / capabilities by the discovery, characterization and exploitation of sensitivity vector fields, smart system interrogation through nonlinear feedback excitation, nonlinear minimal rank perturbation and system augmentation, pattern recognition for attractors, damage detection using bifurcation morphing.

Tayo Fabusuyi

By |

Tayo Fabusuyi is an assistant research scientist in the Human Factors Group at UMTRI. His research interests are in Urban Systems and Operations Research, specifically designing and implementing initiatives that support sustainable and resilient communities with a focus on efficiency and equity issues. Drawing on both quantitative and qualitative data, his research develops and applies hard and soft Operations Research methods to urban systems issues in a manner that emphasizes theory driven solutions with demonstrated value-added. A central theme of his research activities is the use of demand side interventions, via information and pricing strategies in influencing the public’s travel behavior with the objective of achieving more beneficial societal outcomes. Informed by the proliferation of big data and the influence of transportation in the urban sphere, these research activities are categorized broadly into three overlapping and interdependent areas – intelligent transportation systems (ITS), emerging mobility services and urban futures. Before joining the research faculty at UMTRI, Dr. Fabusuyi was a Planning Economist at the African Development Bank and an adjunct Economics faculty member at Carnegie Mellon University, where he received his Ph.D. in Engineering and Public Policy.

Lana Garmire

By |

My research interest lies in applying data science for actionable transformation of human health from the bench to bedside. Current research focus areas include cutting edge single-cell sequencing informatics and genomics; precision medicine through integration of multi-omics data types; novel modeling and computational methods for biomarker research; public health genomics. I apply my biomedical informatics and analytical expertise to study diseases such as cancers, as well the impact of pregnancy/early life complications on later life diseases.

Eric Gilbert

By |

Eric Gilbert is the John Derby Evans Associate Professor in the School of Information—and a Professor in CSE—at the University of Michigan. Before coming to Michigan, he led the lab at Georgia Tech. Dr. Gilbert is a sociotechnologist, with a research focus on building and studying social media systems. His work has been supported by grants from Facebook, Samsung, Yahoo!, Google, NSF, ARL, and DARPA. Dr. Gilbert’s work has been recognized with multiple best paper awards, as well as covered by outlets including Wired, NPR and The New York Times. He is the recipient of an NSF CAREER award and the Sigma Xi Young Faculty Award. Professor Gilbert holds a BS in Math & CS and a PhD in CS—both from from the University of Illinois at Urbana-Champaign.

Thomas Schmidt

By |

The current goal of our research is to learn enough about the physiology and ecology of microbes and microbial communities in the gut that we are able to engineer the gut microbiome to improve human health. The first target of our engineering is the production of butyrate – a common fermentation product of some gut microbes that is essential for human health. Butyrate is the preferred energy source for mitochondria in the epithelial cells lining the gut and it also regulates their gene expression.

One of the most effective ways to influence the composition and metabolism of the gut microbiota is through diet. In an interventional study, we have tracked responses in the composition and fermentative metabolism of the gut microtiota in >800 healthy individuals. Emerging patterns suggest several configurations of the microbiome that can result in increased production of butyrate acid. We have isolated the microbes that form an anaerobic food web to convert dietary fiber to butyrate and continue to make discoveries about their physiology and interactions. Based on these results, we have initiated a clinical trial in which we are hoping to prevent the development of Graft versus Host Disease following bone marrow transplants by managing butyrate production by the gut microbiota.

We are also beginning to track hundreds of other metabolites from the gut microbiome that may influence human health. We use metagenomes and metabolomes to identify patterns that link the microbiota with their metabolites and then test those models in human organoids and gnotobiotic mice colonized with synthetic communities of microbes. This blend of wet-lab research in basic microbiology, data science and in ecology is moving us closer to engineering the gut microbiome to improve human health.