Dr. Briana Mezuk

Briana Mezuk

By |

Dr. Mezuk is the Director of the Center for Social Epidemiology and Population Health and is an Associate Chair in the Department of Epidemiology at the University of Michigan School of Public Health. She is a psychiatric epidemiologist whose research focuses on understanding the intersections of mental and physical health. Much of her work has examined the consequences of depression for medical morbidity and functioning in mid- and late-life, with particular attention to metabolic diseases such as diabetes and frailty. She is also the Director of the Michigan Integrative Well-Being and Inequalities (MIWI) Training Program, a NIH-funded methods training program that supports innovative, interdisciplinary research on the interrelationships between mental and physical health as they relate to health disparities. She is using data science tools to analyze textual data from the National Violent Death Reporting System, with the goal of better understanding how major life transitions relate to suicide risk over the lifespan. She is committed to translating research into practice, and she writes a blog for Psychology Today called “Ask an Epidemiologist.”

Xiaoquan William Wen

By |

Xiaoquan (William) Wen is an Associate Professor of Biostatistics. He received his PhD in Statistics from the University of Chicago in 2011 and joined the faculty at the University of Michigan in the same year. His research centers on developing Bayesian and computational statistical methods to answer interesting scientific questions arising from genetics and genomics.

In the applied field,  he is  particularly interested in seeking statistically sound and computationally efficient solutions to scientific problems in the areas of genetics and functional genomics.
Quantifying tissue-specific expression quantitative trait loci (eQTLs) via Bayesian model comparison

Quantifying tissue-specific expression quantitative trait loci (eQTLs) via Bayesian model comparison

Jordan Mckay

By |

He/Him

Jordan McKay is a Project Associate Manager at MIDAS. An Ann Arbor native, Jordan received his Bachelors in Computer Science from University of Michigan, and his Masters in Information at the University of Michigan School of Information. Outside of business hours, Jordan also works as a conductor, concert pianist, and Music Director with a number of organizations in the Ann Arbor area.

In addition to his duties administrating the day-to-day operations for MIDAS, its website, its events, and its part-time staff, Jordan is an engaged member of the data science community. Jordan is a determined advocate for ethical AI, data sovereignty, accessibility, digital privacy, and humane information system design, and is proud to be a member of a team that is working to make data a force for good in our society.

Michael Craig

By |

Michael is an Assistant Professor of Energy Systems at the University of Michigan’s School for Environment and Sustainability and PI of the ASSET Lab. He researches how to equitably reduce global and local environmental impacts of energy systems while making those systems robust to future climate change. His research advances energy system models to address new challenges driven by decarbonization, climate adaptation, and equity objectives. He then applies these models to real-world systems to generate decision-relevant insights that account for engineering, economic, climatic, and policy features. His energy system models leverage optimization and simulation methods, depending on the problem at hand. Applying these models to climate mitigation or adaptation in real-world systems often runs into computational limits, which he overcomes through clustering, sampling, and other data reduction algorithms. His current interdisciplinary collaborations include climate scientists, hydrologists, economists, urban planners, epidemiologists, and diverse engineers.

Hamid Ghanbari

By |

My research focuses on using digital health solutions, signal processing, machine learning and ecological momentary assessment to understand the physiological and psychological determinants of symptoms in patients with atrial fibrillation. I am building a research framework for rich data collection using smartphone apps, medical records and wearable sensors. I believe that creating a multidimensional dataset to study atrial fibrillation will yield important insights and serve as model for studying all chronic medical conditions.

Matias del Campo

By |

The goal of this project is the creation of a crucial building block of the research on AI and Architecture – a database of 3D models necessary to successfully run Artificial Neural Networks in 3D. This database is part of the first stepping-stones for the research at the AR2IL (Architecture and Artificial Intelligence Laboratory), an interdisciplinary Laboratory between Architecture (represented by Taubman College of Architecture of Urban Planning), Michigan Robotics, and the CS Department of the University of Michigan. A Laboratory dedicated to research specializing in the development of applications of Artificial Intelligence in the field of Architecture and Urban Planning. This area of inquiry has experienced an explosive growth in recent years (triggered in part by research conducted at UoM), as evidenced for example by the growth in papers dedicated to AI applications in architecture, as well as in the investment of the industry in this area. The research funded by this proposal would secure the leading position of Taubman College and the University of Michigan in the field of AI and Architecture. This proposal would also address the current lack of 3D databases that are specifically designed for Architecture applications.

The project “Generali Center’ presents itself as an experiment in the combination of Machine Learning processes capable of learning the salient features of a specific architecture style – in this case, Brutalism- in order to generatively perform interpolations between the data points of the provided dataset. These images serve as the basis of a pixel projection approach that results in a 3D model.

Stefanus Jasin

By |

My research focus the application and development of new algorithms for solving complex business analytics problems. Applications vary from revenue management, dynamic pricing, marketing analytics, to retail logistics. In terms of methodology, I use a combination of operations research and machine learning/online optimization techniques.

 

Cong Shi

By |

Cong Shi is an associate professor in the Department of Industrial and Operations Engineering at the University of Michigan College of Engineering. His primary research interest lies in developing efficient and provably-good data-driven algorithms for operations management models, including supply chain management, revenue management, service operations, and human-robot interactions. He received his Ph.D. in Operations Research at MIT in 2012, and his B.S. in Mathematics from the National University of Singapore in 2007.

Negar Farzaneh

By |

Dr. Farzaneh’s research interest centers on the application of computer science, in particular, machine learning, signal processing, and computer vision, to develop clinical decision support systems and solve medical problems.