Zhongming Liu

By |

My research is at the intersection of neuroscience and artificial intelligence. My group uses neuroscience or brain-inspired principles to design models and algorithms for computer vision and language processing. In turn, we uses neural network models to test hypotheses in neuroscience and explain or predict human perception and behaviors. My group also develops and uses machine learning algorithms to improve the acquisition and analysis of medical images, including functional magnetic resonance imaging of the brain and magnetic resonance imaging of the gut.

We use brain-inspired neural networks models to predict and decode brain activity in humans processing information from naturalistic audiovisual stimuli.

Robert Manduca

By |

Professor Manduca’s research focuses on urban and regional economic development, asking why some cities and regions prosper while others decline, how federal policy influences urban fortunes, and how neighborhood social and economic conditions shape life outcomes. He studies these topics using computer simulations, spatial clustering methods, network analysis, and data visualization.

In other work he explores the consequences of rising income inequality for various aspects of life in the United States, using descriptive methods and simulations applied to Census microdata. This research has shown how rising inequality has lead directly to lower rates of upward mobility and increases in the racial income gap.

9.9.2020 MIDAS Faculty Research Pitch Video.

Screenshot from “Where Are The Jobs?” visualization mapping every job in the United States based on the unemployment insurance records from the Census LODES data. http://robertmanduca.com/projects/jobs.html

Salar Fattahi

By |

Today’s real-world problems are complex and large, often with overwhelmingly large number of unknown variables which render them doomed to the so-called “curse of dimensionality”. For instance, in energy systems, the system operators should solve optimal power flow, unit commitment, and transmission switching problems with tens of thousands of continuous and discrete variables in real time. In control systems, a long standing question is how to efficiently design structured and distributed controllers for large-scale and unknown dynamical systems. Finally, in machine learning, it is important to obtain simple, interpretable, and parsimonious models for high-dimensional and noisy datasets. Our research is motivated by two main goals: (1) to model these problems as tractable optimization problems; and (2) to develop structure-aware and scalable computational methods for these optimization problems that come equipped with certifiable optimality guarantees. We aim to show that exploiting hidden structures in these problems—such as graph-induced or spectral sparsity—is a key game-changer in the pursuit of massively scalable and guaranteed computational methods.

9.9.2020 MIDAS Faculty Research Pitch Video.

My research lies at the intersection of optimization, data analytics, and control.

Albert S. Berahas

By |

Albert S. Berahas is an Assistant Professor in the department of Industrial & Operations Engineering. His research broadly focuses on designing, developing and analyzing algorithms for solving large scale nonlinear optimization problems. Such problems are ubiquitous, and arise in a plethora of areas such as engineering design, economics, transportation, robotics, machine learning and statistics. Specifically, he is interested in and has explored several sub-fields of nonlinear optimization such as: (i) general nonlinear optimization algorithms, (ii) optimization algorithms for machine learning, (iii) constrained optimization, (iv) stochastic optimization, (v) derivative-free optimization, and (vi) distributed optimization.

9.9.2020 MIDAS Faculty Research Pitch Video.

Lucia Cevidanes

By |

We have developed and tested machine learning approaches to integrate quantitative markers for diagnosis and assessment of progression of TMJ OA, as well as extended the capabilities of 3D Slicer4 into web-based tools and disseminated open source image analysis tools. Our aims use data processing and in-depth analytics combined with learning using privileged information, integrated feature selection, and testing the performance of longitudinal risk predictors. Our long term goals are to improve diagnosis and risk prediction of TemporoMandibular Osteoarthritis in future multicenter studies.

The Spectrum of Data Science for Diagnosis of Osteoarthritis of the Temporomandibular Joint

Gabor Orosz

By |

Gabor Orosz is an Associate Professor of Mechanical Engineering and Civil and Environmental Engineering. His theoretical research include dynamical systems, control, and reinforcement learning with particular interests in the roles of nonlinearities and time delays in such systems. In terms of applications he focuses on connected and automated vehicles, traffic flow, and biological networks. His research has been supported by the National Science Foundation and industrial funds. His recent work appeared in journals like IEEE Transactions on Automated Control, IEEE Transactions on Control Systems Technology, IEEE Transactions on Intelligent Transportation Systems, and Transportation Research Part C. For the latter journal he has also be serving as an Editor. WIRED magazine reported on his experimental results when his team built a connected automated vehicle and evaluated it in real traffic. He served as the program chair for the 12th IFAC Workshop on Time Delay Systems and served as the general chair for 3rd IAVSD Workshop on Dynamics of Road Vehicles, Connected and Automated Vehicles.

Joshua Stein

By |

As a board-certified ophthalmologist and glaucoma specialist, I have more than 15 years of clinical experience caring for patients with different types and complexities of glaucoma. In addition to my clinical experience, as a health services researcher, I have developed experience and expertise in several disciplines including performing analyses using large health care claims databases to study utilization and outcomes of patients with ocular diseases, racial and other disparities in eye care, associations between systemic conditions or medication use and ocular diseases. I have learned the nuances of various data sources and ways to maximize our use of these data sources to answer important and timely questions. Leveraging my background in HSR with new skills in bioinformatics and precision medicine, over the past 2-3 years I have been developing and growing the Sight Outcomes Research Collaborative (SOURCE) repository, a powerful tool that researchers can tap into to study patients with ocular diseases. My team and I have spent countless hours devising ways of extracting electronic health record data from Clarity, cleaning and de-identifying the data, and making it linkable to ocular diagnostic test data (OCT, HVF, biometry) and non-clinical data. Now that we have successfully developed such a resource here at Kellogg, I am now collaborating with colleagues at > 2 dozen academic ophthalmology departments across the country to assist them with extracting their data in the same format and sending it to Kellogg so that we can pool the data and make it accessible to researchers at all of the participating centers for research and quality improvement studies. I am also actively exploring ways to integrate data from SOURCE into deep learning and artificial intelligence algorithms, making use of SOURCE data for genotype-phenotype association studies and development of polygenic risk scores for common ocular diseases, capturing patient-reported outcome data for the majority of eye care recipients, enhancing visualization of the data on easy-to-access dashboards to aid in quality improvement initiatives, and making use of the data to enhance quality of care, safety, efficiency of care delivery, and to improve clinical operations. .

Karandeep Singh

By |

I direct the Machine Learning for Learning Health Systems lab, whose work focuses on developing, validating, and evaluating the effectiveness of machine learning models within health systems. This includes projects such as a machine learning-supported patient educational platform (https://ask.musicurology.com) to support decision-making for patients with urological conditions. In additional to my predictive modeling research, I study patient-facing mobile apps and have published on this topic in Health Affairs, the Journal of General Internal Medicine, and the Clinical Journal of the American Society of Nephrology, among others. I have additional leadership roles that recognize my expertise in machine learning at a local and regional level. I chair the Michigan Medicine Clinical Intelligence Committee, which oversees implementation of predictive models across our health system, and I serve on the Michigan Economic Development Corporation’s Artificial Intelligence Advisory Board, where I contribute to the state of Michigan’s vision on artificial intelligence. I also teach a health data science and machine learning course to over 60 graduate students per year.

John Silberholz

By |

Most of my research related to data science involves decision making around clinical trials. In particular, I am interested in how databases of past clinical trial results can inform future trial design and other decisions. Some of my work has involved using machine learning and mathematical optimization to design new combination therapies for cancer based on the results of past trials. Other work has used network meta-analysis to combine the results of randomized controlled trials (RCTs) to better summarize what is currently known about a disease, to design further trials that would be maximally informative, and to study the quality of the control arms used in Phase III trials (which are used for drug approvals). Other work combines toxicity data from clinical trials with toxicity data from other data sources (claims data and adverse event reporting databases) to accelerate detection of adverse drug reactions to newly approved drugs. Lastly, some of my work uses Bayesian inference to accelerate clinical trials with multiple endpoints, learning the link between different endpoints using past clinical trial results.

Feng Zhou

By |

For human-machine systems, I first collect data from human users, whether it’s an individual, a team, or even a society. Different kinds of methods can be used, including self-report, interview, focus groups, physiological and behavioral data, as well as user-generated data from the Internet.

Based on the data collected, I attempt to understand human contexts, including different aspects of the human users, such as emotion, cognition, needs, preferences, locations and activities. Such understanding can then be applied to different human-machine systems, including healthcare systems, automated driving systems, and product-service systems.

Based on the different design theory and methodology, from the perspective of the machine dimension, I apply knowledge of computing and communication as well as practical and theoretical knowledge of social and behavior to design various systems for human users. From the human dimension, I seek to understand human needs and decision making processes, and then build mathematical models and design tools that facilitate integration of subjective experiences, social contexts, and engineering principles into the design process of human-machine systems.