Sophia Brueckner

By |

Sophia Brueckner is a futurist artist/designer/engineer. Inseparable from computers since the age of two, she believes she is a cyborg. As an engineer at Google, she designed and built products used by millions. At RISD and the MIT Media Lab, she researched the simultaneously empowering and controlling nature of technology with a focus on haptics and social interfaces. Her work has been featured internationally by Artforum, SIGGRAPH, The Atlantic, Wired, the Peabody Essex Museum, Portugal’s National Museum of Contemporary Art, and more. Brueckner is the founder and creative director of Tomorrownaut, a creative studio focusing on speculative futures and sci-fi-inspired prototypes. She is currently an artist-in-residence at Nokia Bell Labs, was previously an artist-in-residence at Autodesk, and is an assistant professor at the University of Michigan teaching Sci-Fi Prototyping, a course combining sci-fi, prototyping, and ethics. Her ongoing objective is to combine her background in art, design, and engineering to inspire a more positive future.

Todd Hollon

By |

A major focus of the MLiNS lab is to combine stimulated Raman histology (SRH), a rapid label-free, optical imaging method, with deep learning and computer vision techniques to discover the molecular, cellular, and microanatomic features of skull base and malignant brain tumors. We are using SRH in our operating rooms to improve the speed and accuracy of brain tumor diagnosis. Our group has focused on deep learning-based computer vision methods for automated image interpretation, intraoperative diagnosis, and tumor margin delineation. Our work culminated in a multicenter, prospective, clinical trial, which demonstrated that AI interpretation of SRH images was equivalent in diagnostic accuracy to pathologist interpretation of conventional histology. We were able to show, for the first time, that a deep neural network is able to learn recognizable and interpretable histologic image features (e.g. tumor cellularity, nuclear morphology, infiltrative growth pattern, etc) in order to make a diagnosis. Our future work is directed at going beyond human-level interpretation towards identifying molecular/genetic features, single-cell classification, and predicting patient prognosis.

Sardar Ansari

By |

I build data science tools to address challenges in medicine and clinical care. Specifically, I apply signal processing, image processing and machine learning techniques, including deep convolutional and recurrent neural networks and natural language processing, to aid diagnosis, prognosis and treatment of patients with acute and chronic conditions. In addition, I conduct research on novel approaches to represent clinical data and combine supervised and unsupervised methods to improve model performance and reduce the labeling burden. Another active area of my research is design, implementation and utilization of novel wearable devices for non-invasive patient monitoring in hospital and at home. This includes integration of the information that is measured by wearables with the data available in the electronic health records, including medical codes, waveforms and images, among others. Another area of my research involves linear, non-linear and discrete optimization and queuing theory to build new solutions for healthcare logistic planning, including stochastic approximation methods to model complex systems such as dispatch policies for emergency systems with multi-server dispatches, variable server load, multiple priority levels, etc.

Mark Steven Cohen

By |

In his various roles, he has helped develop several educational programs in Innovation and Entrepreneurial Development (the only one of their kind in the world) for medical students, residents, and faculty as well as co-founding 4 start-up companies (including a consulting group, a pharmaceutical company, a device company, and a digital health startup) to improve the care of surgical patients and patients with cancer. He has given over 80 invited talks both nationally and internationally, written and published over 110 original scientific articles, 12 book chapters, as well as a textbook on “Success in Academic Surgery: Innovation and Entrepreneurship” published in 2019 by Springer-NATURE. His research is focused on drug development and nanoparticle drug delivery for cancer therapeutic development as well as evaluation of circulating tumor cells, tissue engineering for development of thyroid organoids, and evaluating the role of mixed reality technologies, AI and ML in surgical simulation, education and clinical care delivery as well as directing the Center for Surgical Innovation at Michigan. He has been externally funded for 13 consecutive years by donors and grants from Susan G. Komen Foundation, the American Cancer Society, and he currently has funding from three National Institute of Health R-01 grants through the National Cancer Institute. He has served on several grant study sections for the National Science Foundation, the National Institute of Health, the Department of Defense, and the Susan G. Komen Foundation. He also serves of several scientific journal editorial boards and has serves on committees and leadership roles in the Association for Academic Surgery, the Society of University Surgeons and the American Association of Endocrine Surgeons where he was the National Program Chair in 2013. For his innovation efforts, he was awarded a Distinguished Faculty Recognition Award by the University of Michigan in 2019. His clinical interests and national expertise are in the areas of Endocrine Surgery: specifically thyroid surgery for benign and malignant disease, minimally invasive thyroid and parathyroid surgery, and adrenal surgery, as well as advanced Melanoma Surgery including developing and running the hyperthermic isolated limb perfusion program for in transit metastatic melanoma (the only one in the state of Michigan) which is now one of the largest in the nation.

Anne Fernandez

By |

Dr. Fernandez is a clinical psychologist with extensive training in both addiction and behavioral medicine. She is the Clinical Program Director at the University of Michigan Addiction Treatment Service. Her research focuses on the intersection of addiction and health across two main themes: 1) Expanding access to substance use disorder treatment and prevention services particularly in healthcare settings and; 2) applying precision health approaches to addiction-related healthcare questions. Her current grant-funded research includes an NIH-funded randomized controlled pilot trial of a preoperative alcohol intervention, an NIH-funded precision health study to leverage electronic health records to identify high-risk alcohol use at the time of surgery using natural language processing and other machine-learning based approaches, a University of Michigan funded precision health award to understand and prevent new persistent opioid use after surgery using prediction modeling, and a federally-funded evaluation of the state of Michigan’s substance use disorder treatment expansion.

Kevin Stange

By |

Prof. Stange’s research uses population administrative education and labor market data to understand, evaluate and improve education, employment, and economic policy. Much of the work involves analyzing millions of course-taking and transcript records for college students, whether they be at a single institution, a handful of institutions, or all institutions in several states. This data is used to richly characterize the experiences of college students and relate these experiences to outcomes such as educational attainment, employment, earnings, and career trajectories. Several projects also involve working with the text contained in the universe of all job ads posted online in the US for the past decade. This data is used to characterize the demand for different skills and education credentials in the US labor market. Classification is a task that is arising frequently in this work: How to classify courses into groups based on their title and content? How to identify students with similar educational experiences based on their course-taking patterns? How to classify job ads as being more appropriate for one type of college major or another? This data science work is often paired with traditional causal inference tools of economics, including quasi-experimental methods.

Jesse Hamilton

By |

My research focuses on the development of novel Magnetic Resonance Imaging (MRI) technology for imaging the heart. We focus in particular on quantitative imaging techniques, in which the signal intensity at each pixel in an image represents a measurement of an inherent property of a tissue. Much of our research is based on cardiac Magnetic Resonance Fingerprinting (MRF), which is a class of methods for simultaneously measuring multiple tissue properties from one rapid acquisition.

Our group is exploring novel ways to combine physics-based modeling of MRI scans with deep learning algorithms for several purposes. First, we are exploring the use of deep learning to design quantitative MRI scans with improved accuracy and precision. Second, we are developing deep learning approaches for image reconstruction that will allow us to reduce image noise, improve spatial resolution and volumetric coverage, and enable highly accelerated acquisitions to shorten scan times. Third, we are exploring ways of using artificial intelligence to derive physiological motion signals directly from MRI data to enable continuous scanning that is robust to cardiac and breathing motion. In general, we focus on algorithms that are either self-supervised or use training data generated in computer simulations, since the collection of large amounts of training data from human subjects is often impractical when designing novel imaging methods.

Niko Kaciroti

By |

Niko Kaciroti is a Research Scientist at the Departments of Pediatrics and Biostatistics. He received his PhD in Biostatistics from the University of Michigan. Since then he has collaborated in multidisciplinary research at the University of Michigan and with researchers from other universities in the United States and internationally. Dr. Kaciroti is a faculty member at the Center for Computational Medicine and Bioinformatics. His main research interest is in using Bayesian models for analyzing longitudinal data from clinical trials with missing values, as well as using Bayesian methods for nonlinear and dynamic models. Dr. Kaciroti is an elected member of the International Statistical Institute and serves as statistical editor for the American Journal of Preventive Medicine and the International Journal of Behavior Nutrition and Physical Activity.

Kathryn Luker

By |

As an expert in molecular imaging of single cell signaling in cancer, I develop integrated systems of molecular, cellular, optical, and custom image processing tools to extract rich data sets for biochemical and behavioral functions in living cells over minutes to days. Data sets composed of thousands to millions of cells enable us to develop predictive models of cellular function through a variety of computational approaches, including ODE, ABM, and IRL modeling.

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.