Susan Hautaniemi Leonard

By |

I am faculty at ICPSR, the largest social science data archive in the world. I manage an education research pre-registration site (sreereg.org) that is focused on transparency and replicability. I also manage a site for sharing work around record linkage, including code (linkagelibrary.org). I am involved in the LIFE-M project (life-m.org), recently classifying the mortality data. That project uses cutting-edge techniques for machine-reading handwritten forms.

Mortality rates for selected causes in the total population per 1,000, 1850–1912, Holyoke and Northampton, Massachusetts

Elizabeth F. S. Roberts

By |

“Neighborhood Environments as Socio-Techno-bio Systems: Water Quality, Public Trust, and Health in Mexico City (NESTSMX)” is an NSF-funded multi-year collaborative interdisciplinary project that brings together experts in environmental engineering, anthropology, and environmental health from the University of Michigan and the Instituto Nacional de Salud Pública. The PI is Elizabeth Roberts (anthropology), and the co-PIs are Brisa N. Sánchez (biostatistics), Martha M Téllez-Rojo (public health), Branko Kerkez (environmental engineering), and Krista Rule Wigginton (civil and environmental engineering). Our overarching goal for NESTSMX is to develop methods for understanding neighborhoods as “socio-techno-bio systems” and to understand how these systems relate to people’s trust in (or distrust of) their water. In the process, we will collectively contribute to our respective fields of study while we learn how to merge efforts from different disciplinary backgrounds.
NESTSMX works with families living in Mexico City, that participate in an ongoing longitudinal birth-cohort chemical-exposure study (ELEMENT (Early Life Exposures in Mexico to ENvironmental Toxicants, U-M School of Public Health). Our research involves ethnography and environmental engineering fieldwork which we will combine with biomarker data previously gathered by ELEMENT. Our focus will be on the infrastructures and social structures that move water in and out of neighborhoods, households, and bodies.

Testing Real-Time Domestic Water Sensors in Mexico City

Testing Real-Time Domestic Water Sensors in Mexico City

Fabian Pfeffer

By |

My research investigates social inequality and its maintenance across time and generations. Current projects focus on wealth inequality and its consequences for the next generation, the institutional context of social mobility processes and educational inequality in the United States and other industrialized countries. I also help expand the social science data infrastructure and quantitative methods needed to address questions on inequality and mobility. I serve as Principal Investigator of the Wealth and Mobility (WAM) study as well as Co-Investigator of the Panel Study of Income Dynamics (PSID). As such, my research draws on and helps construct nationally representative survey data as well as full-population administrative data. My methodological work has been focused on causal inference, multiple imputation, and measurement error.

Meha Jain

By |

​I am an Assistant Professor in the School for Environment and Sustainability at the University of Michigan and am part of the Sustainable Food Systems Initiative. My research examines the impacts of environmental change on agricultural production, and how farmers may adapt to reduce negative impacts. I also examine ways that we can sustainably enhance agricultural production. To do this work, I combine remote sensing and geospatial analyses with household-level and census datasets to examine farmer decision-making and agricultural production across large spatial and temporal scales.

Conducting wheat crop cuts to measure yield in India, which we use to train algorithms that map yield using satellite data

Thomas L. Chenevert

By |

Multi-center clinical trials increasingly utilize quantitative diffusion imaging (DWI) to aid in patient management and treatment response assessment for translational oncology applications. A major source of systematic bias in diffusion was discovered originating from platform-dependent gradient hardware. Left uncorrected, these biases confound quantitative diffusion metrics used for characterization of tissue pathology and treatment response leading to inconclusive findings, and increasing the requisite subject numbers and trial cost. We have developed technology to mitigate systematic diffusion mapping bias that exists on MRI scanners and are in process of deploying this technology for multi-center clinical trials. Another major source of variance and bottleneck in high-throughput analysis of quantitative diffusion maps is segmentation of tumor/tissue volume of interest (VOI) based on intensities and patterns on multi-contrast MR image datasets, as well as reliable assessment of longitudinal change with disease progression or response to treatment. Our goal is development/trial/application AI algorithms for robust (semi-) automated VOI definition in analysis of multi-dimensional MR datasets for oncology trials.

Representative apparent diffusion coefficient (ADC) histograms and map overlays are shown for oncology trials to be supported by this Academic Industrial Partnership (AIP). ADC is used to characterize tumor malignancy of breast cancer, therapeutic effect in head and neck (H&N) and cellular proliferation in bone marrow of myelofibrosis (MF) patients. Relevant clinical outcome metrics are illustrated under histograms for detection sensitivity threshold (to reduce unnecessary breast biopsies (13)), Kaplan-Meier analysis of therapy response (stratified by median SD of H&N metastatic node (23)), and histopathologic proliferation stage (MF cellular infiltration classification).

Amie Gordon

By |

My research focuses on understanding the social cognitive, affective, and biological factors that shape our closest relationships. I am particularly interested in identifying factors that help romantic couples and families maintain high quality relationships. My work draws upon a variety of methods, including experimental, observational, naturalistic (e.g., daily experience), and physiological, to capture people at multiple levels in a variety of social situations. I frequently gather dyadic longitudinal data in order to understand how relationship partners influence each other in the moment and over time.

Briana Mezuk

By |

My research program uses epidemiologic methods to examine the interrelationships between mental and physical health over the lifespan. A core feature of my research is the integration of conceptual and analytical approaches, methods, and models from social science, including natural language processing, and clinical/health disciplines with the aim of arriving at a more nuanced and comprehensive understanding of the ways in which mental and physical health interrelate. The goal of this work is to inform interventions that reflect an integrative approach to health.

Matthew VanEseltine

By |

Dr. VanEseltine is a sociologist and data scientist working with large-scale administrative data for causal and policy analysis. His interests include studying the effects of scientific infrastructure, training, and initiatives, as well as the development of open, sustainable, and replicable systems for data construction, curation, and dissemination. As part of the Institute for Research on Innovation and Science (IRIS), he contributes to record linkage and data improvements in the research community releases of UMETRICS, a data system built from integrated records on federal award funding and spending from dozens of American universities. Dr. VanEseltine’s recent work includes studying the impacts of COVID-19 on academic research activity.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021