Ben Green

By |

Ben studies the social and political impacts of government algorithms. This work falls into several categories. First, evaluating how people make decisions in collaboration with algorithms. This work involves developing machine learning algorithms and studying how people use them in public sector prediction and decision settings. Second, studying the ethical and political implications of government algorithms. Much of this work draws on STS and legal theory to interrogate topics such as algorithmic fairness, smart cities, and criminal justice risk assessments. Third, developing algorithms for public sector applications. In addition to academic research, Ben spent a year developing data analytics tools as a data scientist for the City of Boston.

Mark Steven Cohen

By |

In his various roles, he has helped develop several educational programs in Innovation and Entrepreneurial Development (the only one of their kind in the world) for medical students, residents, and faculty as well as co-founding 4 start-up companies (including a consulting group, a pharmaceutical company, a device company, and a digital health startup) to improve the care of surgical patients and patients with cancer. He has given over 80 invited talks both nationally and internationally, written and published over 110 original scientific articles, 12 book chapters, as well as a textbook on “Success in Academic Surgery: Innovation and Entrepreneurship” published in 2019 by Springer-NATURE. His research is focused on drug development and nanoparticle drug delivery for cancer therapeutic development as well as evaluation of circulating tumor cells, tissue engineering for development of thyroid organoids, and evaluating the role of mixed reality technologies, AI and ML in surgical simulation, education and clinical care delivery as well as directing the Center for Surgical Innovation at Michigan. He has been externally funded for 13 consecutive years by donors and grants from Susan G. Komen Foundation, the American Cancer Society, and he currently has funding from three National Institute of Health R-01 grants through the National Cancer Institute. He has served on several grant study sections for the National Science Foundation, the National Institute of Health, the Department of Defense, and the Susan G. Komen Foundation. He also serves of several scientific journal editorial boards and has serves on committees and leadership roles in the Association for Academic Surgery, the Society of University Surgeons and the American Association of Endocrine Surgeons where he was the National Program Chair in 2013. For his innovation efforts, he was awarded a Distinguished Faculty Recognition Award by the University of Michigan in 2019. His clinical interests and national expertise are in the areas of Endocrine Surgery: specifically thyroid surgery for benign and malignant disease, minimally invasive thyroid and parathyroid surgery, and adrenal surgery, as well as advanced Melanoma Surgery including developing and running the hyperthermic isolated limb perfusion program for in transit metastatic melanoma (the only one in the state of Michigan) which is now one of the largest in the nation.

Xu Wang

By |

My research is to support more people learn in effective ways. I draw techniques and theories from Human-Computer Interaction, Learning Sciences, and Artificial Intelligence to develop computational methods and systems to support scalable teaching and learning. There are several directions in my research that draw on data science techniques and also contribute to interdisciplinary data science research, 1) data-driven authoring techniques of intelligent tutoring systems, with application domains in UX education and data science education 2) AI-augmented instructional design and the use Human-AI collaborative techniques in instructional design.

View MIDAS Faculty Research Pitch, Fall 2021

Michael Rubyan

By |

My research focuses on the development and evaluation of novel interventions that leverage emerging technologies to train members of the healthcare workforce around adhering to guidelines. I study how to scale custom designed teaching and learning platforms and evaluate their use to motivate effective communication and dissemination of evidence based practice. Other emphases of my work include health policy literacy, translation and communication of health services research, and improving health system literacy in urban communities. I have developed and evaluated numerous web based educational interventions that employ the “flipped classroom” design with an emphasis on understanding the data and analytics that guide successful implementation and promote high fidelity for members of the healthcare workforce. As an implementation scientist, I rely on the integration of data and analytics to understand what motivates successful program implementation.

In addition to the development of these platforms, I have extensive experience developing and evaluating online, hybrid residential, residential courses, and MOOCs related to healthcare management, non-profit management, healthcare finance, and health economics that employ engaging lessons and modules, interactive graphics, and a blended learning format to aid health professions students, and both undergraduate and graduate public health students in understanding the healthcare system. My MOOC entitled “Understanding and Improving the U.S. Health Care System” has been taken by over 5,000 learners and is characterized by the use of “big data” to understand how future healthcare providers learn health policy.

Sindhu Kutty

By |

My research centers on studying the interaction between abstract, theoretically sound probabilistic algorithms and human beings. One aspect of my research explores connections of Machine Learning to Crowdsourcing and Economics; focused in both cases on better understanding the aggregation process. As Machine Learning algorithms are used in making decisions that affect human lives, I am interested in evaluating the fairness of Machine Learning algorithms as well as exploring various paradigms of fairness. I study how these notions interact with more traditional performance metrics. My research in Computer Science Education focuses on developing and using evidence-based techniques in educating undergraduates in Machine Learning. To this end, I have developed a pilot summer program to introduce students to current Machine Learning research and enable them to make a more informed decision about what role they would like research to play in their future. I have also mentored (and continue to mentor) undergraduate students and work with students to produce publishable, and award-winning, undergraduate research.

Bogdan I. Epureanu

By |

• Computational dynamics focused on nonlinear dynamics and finite elements (e.g., a new approach for forecasting bifurcations/tipping points in aeroelastic and ecological systems, new finite element methods for thin walled beams that leads to novel reduced order models).
• Modeling nonlinear phenomena and mechano-chemical processes in molecular motor dynamics, such as motor proteins, toward early detection of neurodegenerative diseases.
• Computational methods for robotics, manufacturing, modeling multi-body dynamics, developed methods for identifying limit cycle oscillations in large-dimensional (fluid) systems.
• Turbomachinery and aeroelasticity providing a better understanding of fundamental complex fluid dynamics and cutting-edge models for predicting, identifying and characterizing the response of blisks and flade systems through integrated experimental & computational approaches.
• Structural health monitoring & sensing providing increased sensibility / capabilities by the discovery, characterization and exploitation of sensitivity vector fields, smart system interrogation through nonlinear feedback excitation, nonlinear minimal rank perturbation and system augmentation, pattern recognition for attractors, damage detection using bifurcation morphing.

Eric Gilbert

By |

Eric Gilbert is the John Derby Evans Associate Professor in the School of Information—and a Professor in CSE—at the University of Michigan. Before coming to Michigan, he led the comp.social lab at Georgia Tech. Dr. Gilbert is a sociotechnologist, with a research focus on building and studying social media systems. His work has been supported by grants from Facebook, Samsung, Yahoo!, Google, NSF, ARL, and DARPA. Dr. Gilbert’s work has been recognized with multiple best paper awards, as well as covered by outlets including Wired, NPR and The New York Times. He is the recipient of an NSF CAREER award and the Sigma Xi Young Faculty Award. Professor Gilbert holds a BS in Math & CS and a PhD in CS—both from from the University of Illinois at Urbana-Champaign.

Frederick George Conrad

By |

Fred Conrad’s research concerns the development of new methods and data sources for conducting social research. His work is largely focused on survey methodology, but he also explores the use of social media content as a complement to survey data and as a source of large-scale qualitative insights. His focus is on data quality and reducing measurement error. For example, live video interviews promote more thoughtful responses, e.g., less straightlining – the tendency to give the same answer to a battery of survey questions, but they also promote less candor when answering questions on sensitive topics. Measurement error in social media include misclassification in the automated interpretation of content using methods such as sentiment analysis and topic modeling, as well as selective self-presentation (only posting flattering content). Equally challenging is not knowing the extent to which users differ from the population to which one might wish to generalize results.

Anthony Vanky

By |

Anthony Vanky develops and applies data science and computational methods to design, plan, evaluate cities, emphasizing their applications to urban planning and design. Broadly, his work focuses on the domains of transportation and human mobility; social behaviors and urban space; policy evaluation; quantitative social sciences; and the evaluation of urban form. Through this work, he has extensively collaborated with public and private partners. In addition, he considers creative approaches toward data visualization, public engagement and advocacy, and research methods.

 

Anthony Vanky’s Cityways project analyzed 2.2 million trips from 135,000 people over one year to understand the factors that influence outdoor pedestrian path choice. Factors considered included weather, urban morphology, businesses, topography, traffic, the presence of green spaces, among others.

 

View Faculty Research Pitch, Fall 2021

Barbara Jane Ericson

By |

I have been creating free and interactive ebooks for introductory computing courses on the open-source Ruenstone platform and analyzing the clickstream data from those courses to improve the ebooks and instruction. In particular, I am interested in using educational data mining to close the feedback loop and improve the instructional materials. I am also interested in learner sourcing to automatically generate and improve assessments. I have been applying principles from educational psychology such as worked examples plus low cognitive load practice to improve instruction. I have been exploring mixed-up code (Parsons) problems as one type of practice. I created two types of adaptation for Parsons problems: intra-problem and inter-problem. In intra-problem adaptation, if the learner is struggling to solve the current problem it can dynamically be made easier. In inter-problem adaptation the difficulty of the next problem is based on the learner’s performance on the previous problem.