Nancy Fleischer

By |

Dr. Fleischer’s research focuses on how the broader socioeconomic and policy environments impact health disparities and the health of vulnerable populations, in the U.S. and around the world. Through this research, her group employs various analytic techniques to examine data at multiple levels (country-level, state-level, and neighborhood-level), emphasizing the role of structural influences on individual health. Her group applies advanced epidemiologic, statistical, and econometric methods to this research, including survey methodology, longitudinal data analysis, hierarchical modeling, causal inference, systems science, and difference-in-difference analysis. Dr. Fleischer leads two NCI-funded projects focused on the impact of tobacco control policies on health equity in the U.S.

Robert Hampshire

By |

He develops and applies operations research, data science, and systems approaches to public and private service industries. His research focuses on the management and policy analysis of emerging networked industries and innovative mobility services such as smart parking, connected vehicles, autonomous vehicles, ride-hailing, bike sharing, and car sharing. He has worked extensively with both public and private sector partners worldwide. He is a queueing theorist that uses statistics, stochastic modeling, simulation and dynamic optimization.

Niccolò Meneghetti

By |

Dr. Niccolò Meneghetti is an Assistant Professor of Computer and Information Science at the University of Michigan-Dearborn.
His major research interests are in the broad area of database systems, with primary focus on probabilistic databases, statistical relational learning and uncertain data management.

Yajuan Si

By |

My research lies in cutting-edge methodology development in streams of Bayesian statistics, complex survey inference, missing data imputation, causal inference, and data confidentiality protection. I have extensive collaboration experiences with health services researchers and epidemiologists to improve healthcare and public health practice, and have been providing statistical support to solve sampling and analysis issues on health and social science surveys.

Karen Alofs

By |

My research focuses on how environmental change, including climate, invasion and habitat destruction influences freshwater ecological communities across space and time. I am involved in a collaborative interdisciplinary project funded by a MIDAS Propelling Original Data Science (PODS) Grant: CHANGES: Collections, Heterogeneous data, And Next Generation Ecological Studies.We are developing protocols for integrating heterogeneous natural science datasets to investigate the impacts of environmental changes on species. Our project focuses on climate change impacts on inland lake fish communities across Michigan, drawing on more than a century’s worth of data and specimens archived at the University of Michigan Museum of Zoology (UMMZ) and the Institute for Fisheries Research (IFR), which is a cooperative unit of the Michigan Department of Natural Resources (DNR) Fisheries Division and the University of Michigan.

Hernán López-Fernández

By |

I am interested in the evolutionary processes that originate “mega-diverse” biotic assemblages and the role of ecology in shaping the evolution of diversity. My program studies the evolution of Neotropical freshwater fishes, the most diverse freshwater fish fauna on earth, with an estimate exceeding 7,000 species. My lab combines molecular phylogenetics and phylogeny-based comparative methods to integrate ecology, functional morphology, life histories and geography into analyses of macroevolutionary patterns of freshwater fish diversification. We are also comparing patterns of diversification across major Neotropical fish clades. Relying on fieldwork and natural history collections, we use methods that span

Andrea Thomer

By |

Andrea Thomer is an assistant professor of information at the University of Michigan School of Information. She conducts research in the areas of data curation, museum informatics, earth science and biodiversity informatics, information organization, and computer supported cooperative work. She is especially interested in how people use and create data and metadata; the impact of information organization on information use; issues of data provenance, reproducibility, and integration; and long-term data curation and infrastructure sustainability. She is studying a number of these issues through the “Migrating Research Data Collections” project – a recently awarded Laura Bush 21st Century Librarianship Early Career Research Grant from the Institute of Museum and Library Services. Dr. Thomer received her doctorate in Library and Information Science from the School of Information Sciences at the University of Illinois at Urbana‐Champaign in 2017.

Jie Liu

By |

Dr. Liu’s research lab aims to develop machine learning approaches for real-world bioinformatics and medical informatics problems. We believe that computational methods are essential in order to understand many of these molecular biology problems, including the dynamics of genome conformation and nuclear organization, gene regulation, cellular networks, and the genetic basis of human diseases.

The first computational embedding method for single cells in terms of their chromatin organization.

Jin Lu

By |

Dr. Jin Lu is an Assistant Professor of Computer and Information Science at the University of Michigan, Dearborn.
His major research interests include machine learning, data mining, optimization, matrix analysis, biomedical informatics, and health informatics. Two main directions are being pursued:
(1) Large-scale machine learning problems with data heterogeneity. Data heterogeneity is common across many high-impact application domains, ranging from recommendation system to Computer Vision, Bioinformatics and Health-informatics. Such heterogeneity can be present in a variety of forms, including (a) sample heterogeneity, where multiple resources of data samples are available as side information; (b) task heterogeneity, where multiple related learning tasks can be jointly learned to improve the overall performance; (c) view heterogeneity, where complementary information is available from various sources. My research interests focus on building efficient machine learning methods from such data heterogeneity, aiming to improve the learning model by making the best use of all data resources.
(2) Machine learning methods with provable guarantees. Machine learning has been substantially developed and has demonstrated great success in various domains. Despite its practical success, many of the applications involve solving NP-hard problems based on heuristics. It is challenging to analyze whether a heuristic scheme has any theoretical guarantee. My research interest is to employ granular data structure, e.g. sample clusters or features describing an aspect of the sample, to design new theoretically-sound models and algorithms for machine learning problems.

Christopher E. Gillies

By |

I am Research Faculty with the Michigan Center for Integrative Research in Critical Care (MCIRCC). Our team builds predictive algorithms, analyzes signals, and implements statistical models to advance Critical Care Medicine. We use electronic healthcare record data to build predictive algorithms. One example of this is Predicting Intensive Care Transfers and other Unforeseen Events (PICTURE), which uses commonly collected vital signs and labs to predict patient deterioration on the general hospital floor. Additionally, our team collects waveforms from the University Hospital, and we store this data utilizing Amazon Web Services. We use these signals to build predictive algorithms to advance precision medicine. Our flagship algorithm called Analytic for Hemodynamic Instability (AHI), predicts patient deterioration using a single-lead electrocardiogram signal. We use Bayesian methods to analyze metabolomic biomarker data from blood and exhaled breath to understand Sepsis and Acute Respiratory Distress Syndrome. I also have an interest in statistical genetics.