Robert Ziff

By |

I study the percolation model, which is the model for long-range connectivity formation in systems that include polymerization, flow in porous media, cell-phone signals, and the spread of diseases. I study this on random graphs and other networks, and on regular lattices in various dimensions, using computer simulation and analysis. We have also worked on developing new algorithms. I am currently applying these methods to studying the COVID-19 pandemic, which also requires comparison with some of the vast amount of data that is available from every part of the world.

 

Veera Sundararaghavan

By |

Veera Sundararaghavan is a Professor of Aerospace Engineering at the University of Michigan – Ann Arbor and the director of Multiscale Structural Simulations Laboratory. His research is on multi-length scale computational techniques for modelling and design of aerospace materials with a focus on microstructural mechanics (crystal plasticity, homogenization) and molecular simulation. He is particularly interested in new computational techniques that can revolutionize the way we compute in materials science: machine learning and quantum computing algorithms. He has made important contributions in the area of integrated computational materials engineering (ICME) including reduced order representations for microstructure-process-property relationships, Markov random fields approach for microstructure reconstruction, and parallel, multiscale algorithms for optimizing deformation, fatigue, failure and oxidation response in polycrystalline alloys, high temperature ceramic matrix composites and energetic composites. Methods of choice for data science include deep Boltzmann machines, undirected graph models (Markov random fields) and Support vector machines.

An illustration of the hybrid Quantum-Classical computation technique: Quantum Annealer is used as a Boltzmann sampler while the gradient optimization is carried out using classical computation

Jie Liu

By |

Dr. Liu’s research lab aims to develop machine learning approaches for real-world bioinformatics and medical informatics problems. We believe that computational methods are essential in order to understand many of these molecular biology problems, including the dynamics of genome conformation and nuclear organization, gene regulation, cellular networks, and the genetic basis of human diseases.

The first computational embedding method for single cells in terms of their chromatin organization.

Birhanu Eshete

By |

I study cybercrime using data-driven methods to analyze, characterize, and measure the infrastructure and modus operandi used by criminal activities on the Internet. In particular, I focus on collection, analysis, and semantic characterization of cyber threat intelligence that comes in many shapes and forms (e.g., natural language, network traffic, system audit logs). The ultimate goal is to learn insights that will inform decisions on building robust defense against online criminal activities that involve threats such as ransomware, exploit kits, and botnets. To achieve these goals, I find graph theory and analytics, machine learning (deep learning), longitudinal analysis, and causality inference to be the natural methods. I also study the training and deployment of cyber threat classification/prediction systems in adversarial settings.

From behavioral fingerprinting and detection of cybercrime toolkits to analytics and detection of online cyber threats; from semantic characterization of cyber threat intelligence to detection and forensics of advanced cyber attacks, machine learning, graph theory and analytics, graph isomorphism, and causal inference serve as the core ingredients to build robust defense against cyber threats.

Harm Derksen

By |

Current research includes a project funded by Toyota that uses Markov Models and Machine Learning to predict heart arrhythmia, an NSF-funded project to detect Acute Respiratory Distress Syndrome (ARDS) from x-ray images and projects using tensor analysis on health care data (funded by the Department of Defense and National Science Foundation).

Veera Baladandayuthapani

By |

Dr. Veera Baladandayuthapani is currently a Professor in the Department of Biostatistics at University of Michigan (UM), where he is also the Associate Director of the Center for Cancer Biostatistics. He joined UM in Fall 2018 after spending 13 years in the Department of Biostatistics at University of Texas MD Anderson Cancer Center, Houston, Texas, where was a Professor and Institute Faculty Scholar and held adjunct appointments at Rice University, Texas A&M University and UT School of Public Health. His research interests are mainly in high-dimensional data modeling and Bayesian inference. This includes functional data analyses, Bayesian graphical models, Bayesian semi-/non-parametric models and Bayesian machine learning. These methods are motivated by large and complex datasets (a.k.a. Big Data) such as high-throughput genomics, epigenomics, transcriptomics and proteomics as well as high-resolution neuro- and cancer- imaging. His work has been published in top statistical/biostatistical/bioinformatics and biomedical/oncology journals. He has also co-authored a book on Bayesian analysis of gene expression data. He currently holds multiple PI-level grants from NIH and NSF to develop innovative and advanced biostatistical and bioinformatics methods for big datasets in oncology. He has also served as the Director of the Biostatistics and Bioinformatics Cores for the Specialized Programs of Research Excellence (SPOREs) in Multiple Myeloma and Lung Cancer and Biostatistics&Bioinformatics platform leader for the Myeloma and Melanoma Moonshot Programs at MD Anderson. He is a fellow of the American Statistical Association and an elected member of the International Statistical Institute. He currently serves as an Associate Editor for Journal of American Statistical Association, Biometrics and Sankhya.

 

An example of horizontal (across cancers) and vertical (across multiple molecular platforms) data integration. Image from Ha et al (Nature Scientific Reports, 2018; https://www.nature.com/articles/s41598-018-32682-x)

Neda Masoud

By |

The future of transportation lies at the intersection of two emerging trends, namely, the sharing economy and connected and automated vehicle technology. Our research group investigates the impact of these two major trends on the future of mobility, quantifying the benefits and identifying the challenges of integrating these technologies into our current systems.

Our research on shared-use mobility systems focuses on peer-to-peer (P2P) ridesharing and multi-modal transportation. We provide: (i) operational tools and decision support systems for shared-use mobility in legacy as well as connected and automated transportation systems. This line of research focuses on system design as well as routing, scheduling, and pricing mechanisms to serve on-demand transportation requests; (ii) insights for regulators and policy makers on mobility benefits of multi-modal transportation; (ii) planning tools that would allow for informed regulations of sharing economy.

In another line of research we investigate challenges faced by the connected automated vehicle technology before mass adoption of this technology can occur. Our research mainly focuses on (i) transition of control authority between the human driver and the autonomous entity in semi-autonomous (level 3 SAE autonomy) vehicles; (ii) incorporating network-level information supplied by connected vehicle technology into traditional trajectory planning; (iii) improving vehicle localization by taking advantage of opportunities provided by connected vehicles; and (iv) cybersecurity challenges in connected and automated systems. We seek to quantify the mobility and safety implications of this disruptive technology, and provide insights that can allow for informed regulations.

Adriene Beltz

By |

The goal of my research is to leverage network analysis techniques to uncover how the brain mediates sex hormone influences on gendered behavior across the lifespan. Specifically, my data science research concerns the creation and application of person-specific connectivity analyses, such as unified structural equation models, to time series data; these are intensive longitudinal data, including functional neuroimages, daily diaries, and observations. I then use these data science methods to investigate the links between androgens (e.g., testosterone) and estradiol at key developmental periods, such as puberty, and behaviors that typically show sex differences, including aspects of cognition and psychopathology.

A network map showing the directed connections among 25 brain regions of interest in the resting state frontoparietal network for an individual; data were acquired via functional magnetic resonance imaging. Black lines depict connections common across individuals in the sample, gray lines depict connections specific to this individual, solid lines depict contemporaneous connections (occurring in the same volume), and dashed lines depict lagged connections (occurring between volumes).

A network map showing the directed connections among 25 brain regions of interest in the resting state frontoparietal network for an individual; data were acquired via functional magnetic resonance imaging. Black lines depict connections common across individuals in the sample, gray lines depict connections specific to this individual, solid lines depict contemporaneous connections (occurring in the same volume), and dashed lines depict lagged connections (occurring between volumes).

Suleyman Uludag

By |

My research spans security, privacy, and optimization of data collection particularly as applied to the Smart Grid, an augmented and enhanced paradigm for the conventional power grid. I am particularly interested in optimization approaches that take a notion of security and/or privacy into the modeling explicitly. At the intersection of the Intelligent Transportation Systems, Smart Grid, and Smart Cities, I am interested in data privacy and energy usage in smart parking lots. Protection of data and availability, especially under assault through a Denial-of-Service attacks, represents another dimension of my area of research interests. I am working on developing data privacy-aware bidding applications for the Smart Grid Demand Response systems without relying on trusted third parties. Finally, I am interested in educational and pedagogical research about teaching computer science, Smart Grid, cyber security, and data privacy.

This figure shows the data collection model I used in developing a practical and secure Machine-to-Machine data collection protocol for the Smart Grid.

This figure shows the data collection model I used in developing a practical and secure
Machine-to-Machine data collection protocol for the Smart Grid.