Explore ARCExplore ARC

Ho-Joon Lee

By |

Dr. Lee’s research in data science concerns biological questions in systems biology and network medicine by developing algorithms and models through a combination of statistical/machine learning, information theory, and network theory applied to multi-dimensional large-scale data. His projects have covered genomics, transcriptomics, proteomics, and metabolomics from yeast to mouse to human for integrative analysis of regulatory networks on multiple molecular levels, which also incorporates large-scale public databases such as GO for functional annotation, PDB for molecular structures, and PubChem and LINCS for drugs or small compounds. He previously carried out proteomics and metabolomics along with a computational derivation of dynamic protein complexes for IL-3 activation and cell cycle in murine pro-B cells (Lee et al., Cell Reports 2017), for which he developed integrative analytical tools using diverse approaches from machine learning and network theory. His ongoing interests in methodology include machine/deep learning and topological Kolmogorov-Sinai entropy-based network theory, which are applied to (1) multi-level dynamic regulatory networks in immune response, cell cycle, and cancer metabolism and (2) mass spectrometry-based omics data analysis.

Figure 1. Proteomics and metabolomics analysis of IL-3 activation and cell cycle (Lee et al., Cell Reports 2017). (A) Multi-omics abundance profiles of proteins, modules/complexes, intracellular metabolites, and extracellular metabolites over one cell cycle (from left to right columns) in response to IL-3 activation. Red for proteins/modules/intracellular metabolites up-regulation or extracellular metabolites release; Green for proteins/modules/intracellular metabolites down-regulation or extracellular metabolites uptake. (B) Functional module network identified from integrative analysis. Red nodes are proteins and white nodes are functional modules. Expression profile plots are shown for literature-validated functional modules. (C) Overall pathway map of IL-3 activation and cell cycle phenotypes. (D) IL-3 activation and cell cycle as a cancer model along with candidate protein and metabolite biomarkers. (E) Protein co-expression scale-free network. (F) Power-low degree distribution of the network E. (G) Protein entropy distribution by topological Kolmogorov-Sinai entropy calculated for the network E.


Romesh Saigal

By |

Professor Saigal has held faculty positions at the Haas School of Business, Berkeley and the department of Industrial Engineering and Management Sciences at Northwestern University, has been a researcher at the Bell Telephone Laboratories and numerous short term visiting positions. He currently teaches courses in Financial Engineering. In the recent past he taught courses in optimization, and Management Science. His current research involves data based studies of operational problems in the areas of Finance, Transportation, Renewable Energy and Healthcare, with an emphasis on the management and pricing of risks. This involves the use of data analytics, optimization, stochastic processes and financial engineering tools. His earlier research involved theoretical investigation into interior point methods, large scale optimization and software development for mathematical programming. He is an author of two books on optimization and large set of publications in top refereed journals. He has been an associate editor of Management Science and is a member of SIAM, AMS and AAAS. He has served as the Director of the interdisciplinary Financial Engineering Program and as the Director of Interdisciplinary Professional Programs (now Integrative Design + Systems) at the College of Engineering.

Ding Zhao

By |

Ding Zhao, PhD, is Assistant Research Scientist in the department of Mechanical Engineering, College of Engineering with a secondary appointment in the Robotics Institute at The University of Michigan, Ann Arbor.

Dr. Zhao’s research interests include autonomous vehicles, intelligent/connected transportation, traffic safety, human-machine interaction, rare events analysis, dynamics and control, machine learning, and big data analysis


Emily Mower Provost

By |

Research in the CHAI lab focuses on emotion modeling (classification and perception) and assistive technology (bipolar disorder and aphasia).

Behavioral Signal Processing Approach to Modeling Human-centered Data

Behavioral Signal Processing Approach to Modeling Human-centered Data

Jason Mars

By |

Jason Mars is a professor of computer science at the University of Michigan where he directs Clarity Lab, one of the best places in the world to be trained in A.I. and system design. Jason is also co-founder and CEO of Clinc, the cutting-edge A.I. startup that developed the world’s most advanced conversational AI.

Jason has devoted his career to solving difficult real-world problems, building some of the worlds most sophisticated salable systems for A.I., computer vision, and natural language processing. Prior to University of Michigan, Jason was a professor at UCSD. He also worked at Google and Intel.

Jason’s work constructing large-scale A.I. and deep learning-based systems and technology has been recognized globally and continues to have a significant impact on industry and academia. Jason holds a PhD in Computer Science from UVA.

Issam El Naqa

By |

Our lab’s research interests are in the areas of oncology bioinformatics, multimodality image analysis, and treatment outcome modeling. We operate at the interface of physics, biology, and engineering with the primary motivation to design and develop novel approaches to unravel cancer patients’ response to chemoradiotherapy treatment by integrating physical, biological, and imaging information into advanced mathematical models using combined top-bottom and bottom-top approaches that apply techniques of machine learning and complex systems analysis to first principles and evaluating their performance in clinical and preclinical data. These models could be then used to personalize cancer patients’ chemoradiotherapy treatment based on predicted benefit/risk and help understand the underlying biological response to disease. These research interests are divided into the following themes:

  • Bioinformatics: design and develop large-scale datamining methods and software tools to identify robust biomarkers (-omics) of chemoradiotherapy treatment outcomes from clinical and preclinical data.
  • Multimodality image-guided targeting and adaptive radiotherapy: design and develop hardware tools and software algorithms for multimodality image analysis and understanding, feature extraction for outcome prediction (radiomics), real-time treatment optimization and targeting.
  • Radiobiology: design and develop predictive models of tumor and normal tissue response to radiotherapy. Investigate the application of these methods to develop therapeutic interventions for protection of normal tissue toxicities.

Honglak Lee

By |

Dr. Lee’s research interests lie in machine learning and its applications to artificial intelligence. In particular, he focuses on deep learning and representation learning, which aims to learn an abstract representation of the data by a hierarchical and compositional structure. His research also spans over related topics, such as graphical models, optimization, and large-scale learning. Specific application areas include computer vision, audio recognition, robotics, text modeling, and healthcare.

Jia Deng

By |

Jia Deng is an Assistant Professor of Computer Science and Engineering at the University of Michigan. His research focus is on computer vision and machine learning. He received his Ph.D. from Princeton University and his B.Eng. from Tsinghua University, both in computer science. He is a recipient of the PAMI Mark Everingham Prize, the Yahoo ACE Award, a Google Faculty Research Award, the ICCV Marr Prize, and the ECCV Best Paper Award.

Satinder Singh Baveja

By |

My main research interest is in the old-fashioned goal of Artificial Intelligence (AI), that of building autonomous agents that can learn to be broadly competent in complex, dynamic, and uncertain environments. The field of reinforcement learning (RL) has focused on this goal and accordingly my deepest contributions are in RL.
A very recent effort combines Deep Learning and Reinforcement Learning.

From time to time, I take seriously the challenge of building agents that can interact with other agents and even humans in both artificial and natural environments. This has led to research in:

Over the past few years, I have begun to focus on Healthcare as an application area.