Ranjan Pal

By |

Cyber-security is a complex and multi-dimensional research field. My research style comprises an inter-disciplinary (primarily rooted in economics, econometrics, data science (AI/ML/Bayesian and Frequentist Statistics), game theory, and network science) investigation of major socially pressing issues impacting the quality of cyber-risk management in modern networked and distributed engineering systems such as IoT-driven critical infrastructures, cloud-based service networks, and app-based systems (e.g., mobile commerce, smart homes) to name a few. I take delight in proposing data-driven, rigorous, and interdisciplinary solutions to both, existing fundamental challenges that pose a practical bottleneck to (cost) effective cyber-risk management, and futuristic cyber-security and privacy issues that might plague modern (networked) engineering systems. I strongly strive for originality, practical significance, and mathematical rigor in my solutions. One of my primary end goals is to conceptually get arms around complex, multi-dimensional information security and privacy problems in a way that helps, informs, and empowers practitioners and policy makers to take the right steps in making the cyber-space more secure.

Albert Shih

By |

My research is focused on the human biometric data (such as motion) to guide the design and manufacturing of assistive and proactive devices. Embedded and external sensors generate ample data which require scientific approaches to analyze and create knowledge. I have worked closely with the University of Michigan Orthotics and Prosthetics Center in the design and manufacturing of custom assistive devices using 3D-printing and cyber-based design. The goal is to create a cyber-physical system that can acquire the data from scanning, sensors, human motion, user feedback, clinician diagnosis into quantitative health metrics and guidelines to improve the quality of care for people with needs.

Maureen Sartor

By |

My lab has two main areas of focus: molecular characteristics of head and neck cancer, and the intersection of regulatory genomics and pathway analysis. With head and neck cancer, we study tumor subtypes and biomarkers of prognosis, treatment response, and recurrence. We perform integrative omics analyses, dimension reduction methods, and prediction techniques, with the ultimate goal of identifying patient subsets who would benefit from either an additional targeted treatment or de-escalated treatment to increase quality of life. For regulatory genomics and pathway analysis, we develop statistical tests taking into account important covariates and other variables for weighting observations.

Xu Shi

By |

My methodological research focus on developing statistical methods for routinely collected healthcare databases such as electronic health records (EHR) and claims data. I aim to tackle the unique challenges that arise from the secondary use of real-world data for research purposes. Specifically, I develop novel causal inference methods and semiparametric efficiency theory that harness the full potential of EHR data to address comparative effectiveness and safety questions. I develop scalable and automated pipelines for curation and harmonization of EHR data across healthcare systems and coding systems.

Frederick George Conrad

By |

Fred Conrad’s research concerns the development of new methods and data sources for conducting social research. His work is largely focused on survey methodology, but he also explores the use of social media content as a complement to survey data and as a source of large-scale qualitative insights. His focus is on data quality and reducing measurement error. For example, live video interviews promote more thoughtful responses, e.g., less straightlining – the tendency to give the same answer to a battery of survey questions, but they also promote less candor when answering questions on sensitive topics. Measurement error in social media include misclassification in the automated interpretation of content using methods such as sentiment analysis and topic modeling, as well as selective self-presentation (only posting flattering content). Equally challenging is not knowing the extent to which users differ from the population to which one might wish to generalize results.

Gregory S. Miller

By |

Greg’s research primarily investigates information flow in financial markets and the actions of agents in those markets – both consumers and producers of that information. His approach draws on theory from the social sciences (economics, psychology and sociology) combined with large data sets from diverse sources and a variety of data science approaches. Most projects combine data from across multiple sources, including commercial data bases, experimentally created data and extracting data from sources designed for other uses (commercial media, web scrapping, cellphone data etc.). In addition to a wide range of econometric and statistical methods, his work has included applying machine learning , textual analysis, mining social media, processes for missing data and combining mixed media.

Jeffrey Morenoff

By |

Jeffrey D. Morenoff is a professor of sociology, a research professor at the Institute for Social Research (ISR), and a professor of public policy at the Ford School. He is also director of the ISR Population Studies Center. Professor Morenoff’s research interests include neighborhood environments, inequality, crime and criminal justice, the social determinants of health, racial/ethnic/immigrant disparities in health and antisocial behavior, and methods for analyzing multilevel and spatial data.

Jana Hirschtick

By |

I am a social epidemiologist with expertise in data collection, analysis, and translation. My research is focused on quantifying health inequities at the individual, community, and national level and examining how policy and social factors impact these inequities. My experience has spanned academic, clinical, and community settings, providing me with a unique perspective on the value and need for epidemiologic research and dissemination in multiple contexts. My current work focuses on the health equity impact of tobacco product use as part of the University of Michigan Tobacco Center of Regulatory Science, the Center for the Assessment of Tobacco Regulations (CAsToR). I am examining sociodemographic inequities in polytobacco use (the use of multiple tobacco products) across multiple nationally representative datasets. I am also an active member of CAsToR’s Data Analysis and Dissemination (DAD) Core. Additionally, I am collaborating with colleagues in Chicago to disseminate findings from a community-level probability survey of 10 Chicago communities, of which I served as Co-PI while working at a hospital system in Chicago. We continue to publish on the unique survey process, sharing our community-driven approach to conducting research and disseminating findings in partnership with surveyed communities.

Nancy Fleischer

By |

Dr. Fleischer’s research focuses on how the broader socioeconomic and policy environments impact health disparities and the health of vulnerable populations, in the U.S. and around the world. Through this research, her group employs various analytic techniques to examine data at multiple levels (country-level, state-level, and neighborhood-level), emphasizing the role of structural influences on individual health. Her group applies advanced epidemiologic, statistical, and econometric methods to this research, including survey methodology, longitudinal data analysis, hierarchical modeling, causal inference, systems science, and difference-in-difference analysis. Dr. Fleischer leads two NCI-funded projects focused on the impact of tobacco control policies on health equity in the U.S.

Gary L. Freed

By |

I conduct a broad range of research on health policy and health economics focused on children. I will be launching a program on child health equity in the fall of 2020.