Explore ARCExplore ARC

Yongsheng Bai

By |

Dr. Bai’s research interests lie in development and refinement of bioinformatics algorithms/software and databases on next-generation sequencing (NGS data), development of statistical model for solving biological problems, bioinformatics analysis of clinical data, as well as other topics including, but not limited to, uncovering disease genes and variants using informatics approaches, computational analysis of cis-regulation and comparative motif finding, large-scale genome annotation, comparative “omics”, and evolutionary genomics.

Hyun Min Kang

By |

Hyun Min Kang is an Associate Professor in the Department of Biostatistics. He received his Ph.D. in Computer Science from University of California, San Diego in 2009 and joined the University of Michigan faculty in the same year. Prior to his doctoral studies, he worked as a research fellow at the Genome Research Center for Diabetes and Endocrine Disease in the Seoul National University Hospital for a year and a half, after completing his Bachelors and Masters degree in Electrical Engineering at Seoul National University. His research interest lies in big data genome science. Methodologically, his primary focus is on developing statistical methods and computational tools for large-scale genetic studies. Scientifically, his research aims to understand the etiology of complex disease traits, including type 2 diabetes, bipolar disorder, cardiovascular diseases, and glomerular diseases.

Veera Baladandayuthapani

By |

Dr. Veera Baladandayuthapani is currently a Professor in the Department of Biostatistics at University of Michigan (UM), where he is also the Associate Director of the Center for Cancer Biostatistics. He joined UM in Fall 2018 after spending 13 years in the Department of Biostatistics at University of Texas MD Anderson Cancer Center, Houston, Texas, where was a Professor and Institute Faculty Scholar and held adjunct appointments at Rice University, Texas A&M University and UT School of Public Health. His research interests are mainly in high-dimensional data modeling and Bayesian inference. This includes functional data analyses, Bayesian graphical models, Bayesian semi-/non-parametric models and Bayesian machine learning. These methods are motivated by large and complex datasets (a.k.a. Big Data) such as high-throughput genomics, epigenomics, transcriptomics and proteomics as well as high-resolution neuro- and cancer- imaging. His work has been published in top statistical/biostatistical/bioinformatics and biomedical/oncology journals. He has also co-authored a book on Bayesian analysis of gene expression data. He currently holds multiple PI-level grants from NIH and NSF to develop innovative and advanced biostatistical and bioinformatics methods for big datasets in oncology. He has also served as the Director of the Biostatistics and Bioinformatics Cores for the Specialized Programs of Research Excellence (SPOREs) in Multiple Myeloma and Lung Cancer and Biostatistics&Bioinformatics platform leader for the Myeloma and Melanoma Moonshot Programs at MD Anderson. He is a fellow of the American Statistical Association and an elected member of the International Statistical Institute. He currently serves as an Associate Editor for Journal of American Statistical Association, Biometrics and Sankhya.


An example of horizontal (across cancers) and vertical (across multiple molecular platforms) data integration. Image from Ha et al (Nature Scientific Reports, 2018; https://www.nature.com/articles/s41598-018-32682-x)

Oleg Gnedin

By |

I am a theoretical astrophysicist studying the origins and structure of galaxies in the universe. My research focuses on developing more realistic gasdynamics simulations, starting with the initial conditions that are well constrained by observations, and advancing them in time with high spatial resolution using adaptive mesh refinement. I use machine-learning techniques to compare simulation predictions with observational data. Such comparison leads to insights about the underlying physics that governs the formation of stars and galaxies. I have developed a Computational Astrophysics course that teaches practical application of modern techniques for big-data analysis and model fitting.

Emergence of galaxies and star clusters in cosmological gasdynamics simulations. Left panel shows large-scale cosmic structure (density of dark matter particles), which formed by gravitational instability. In the middle panel we can resolve this structure into disk galaxies with complex morphology (density of molecular/red and atomic/blue gas). These galaxies should create massive star clusters, such as shown in the right panel (real image — to be reproduced by our future simulations!).

Fred Feng

By |

Dr. Feng’s research involves conducting and using naturalistic observational studies to better understand the interactions between motorists and other road users including bicyclists and pedestrians. The goal is to use an evidence-based, data-driven approach that improves bicycling and walking safety and ultimately makes them viable mobility options. A naturalistic study is a valuable and unique research method that provides continuous, high-time-resolution, rich, and objective data about how people drive/ride/walk for their everyday trips in the real world. It also faces challenges from the sheer volume of the data, and as with all observational studies, there are potential confounding factors compared to a randomized laboratory experiment. Data analytic methods can be developed to interpret the behavioral data, make meaningful inferences, and get actionable insights.

Using naturalistic driving data to examine the interactions between motorists and bicyclists

Shan Bao

By |

My research interests are to improve safety associated with motor-vehicle transportation by addressing both active safety (increased crash avoidance) and passive safety (increased crash protection) issues through the development and application of a wide range of research methodologies. These methodologies are targeted at developing a better understanding and modeling of driver behavior, including physical and cognitive attributes, driver decision-making processes and human intention prediction. I am currently interested in applying data science to study the following topics:
*Driver state detection and prediction;

*Improve user intersection with automated vehicle technologies;

*Communication and interaction between vehicle and vulnerable road users

*Driving style classification

*Human factors issues associated with connected and automated vehicle technologies

Where do drivers look when they are not paying attention to the road


Patrick Schloss

By |

The Schloss lab is broadly interested in beneficial and pathogenic host-microbiome interactions with the goal of improving our understanding of how the microbiome can be used to reach translational outcomes in the prevention, detection, and treatment of colorectal cancer, Crohn’s disease, and Clostridium difficile infection. To address these questions, we test traditional ecological theory in the microbial context using a systems biology approach. Specifically, the laboratory specializes in using studies involving human subjects and animal models to understand how biological diversity affects community function using a variety of culture-independent genomics techniques including sequencing 16S rRNA gene fragments, metagenomics, and metatranscriptomics. In addition, they use metabolomics to understand the functional role of the gut microbiota in states of health and disease. To support these efforts, they develop and apply bioinformatic tools to facilitate their analysis. Most notable is the development of the mothur software package (https://www.mothur.org), which is one of the most widely used tools for analyzing microbiome data and has been cited more than 7,300 times since it was initially published in 2009. The Schloss lab deftly merges the ability to collect data to answer important biological questions using cutting edge wet-lab techniques and computational tools to synthesize these data to answer their biological questions.

Given the explosion in microbiome research over the past 15 years, the Schloss lab has also stood at the center of a major effort to train interdisciplinary scientists in applying computational tools to study complex biological systems. These efforts have centered around developing reproducible research skills and applying modern data visualization techniques. An outgrowth of these efforts at the University of Michigan has been the institutionalization of The Carpentries organization on campus (https://carpentries.org), which specializes in peer-to-peer instruction of programming tools and techniques to foster better reproducibility and build a community of practitioners.

The Schloss lab uses computational tools to integrate multi-omics tools in a culture-independent approach to understand how bacteria interact with each other and their host to drive processes such as colorectal cancer and susceptibility to Clostridium difficile infections.

Victoria Morckel

By |

Dr. Morckel uses spatial and statistical methods to examine ways to improve quality of life for people living in shrinking, deindustrialized cities in the Midwestern United States. She is especially interested in the causes and consequences of population loss, including issues of vacancy, blight, and neighborhood change.

Suitability Analysis Results: Map of Potential Properties to Naturalize in the City of Flint, Michigan.

Tim Cernak

By |

Tim Cernak, PhD, is Assistant Professor of Medicinal Chemistry with secondary appointments in Chemistry and the Chemical Biology Program at the University of Michigan, Ann Arbor.

The functional and biological properties of a small molecule are encoded within its structure so synthetic strategies that access diverse structures are paramount to the invention of novel functional molecules such as biological probes, materials or pharmaceuticals. The Cernak Lab studies the interface of chemical synthesis and computer science to understand the relationship of structure, properties and reactions. We aim to use algorithms, robotics and big data to invent new chemical reactions, synthetic routes to natural products, and small molecule probes to answer questions in basic biology. Researchers in the group learn high-throughput chemical and biochemical experimentation, basic coding, and modern synthetic techniques. By studying the relationship of chemical synthesis to functional properties, we pursue the opportunity to positively impact human health.

Lawrence Seiford

By |

Professor Seiford’s research interests are primarily in the areas of quality engineering, productivity analysis, process improvement, multiple-criteria decision making, and performance measurement. In addition, he is recognized as one of the world’s experts in the methodology of Data Envelopment Analysis. His current research involves the development of benchmarking models for identifying best-practice in manufacturing and service systems. He has written and co-authored four books and over one hundred articles in the areas of quality, productivity, operations management, process improvement, decision analysis, and decision support systems.