Bogdan I. Epureanu

By |

• Computational dynamics focused on nonlinear dynamics and finite elements (e.g., a new approach for forecasting bifurcations/tipping points in aeroelastic and ecological systems, new finite element methods for thin walled beams that leads to novel reduced order models).
• Modeling nonlinear phenomena and mechano-chemical processes in molecular motor dynamics, such as motor proteins, toward early detection of neurodegenerative diseases.
• Computational methods for robotics, manufacturing, modeling multi-body dynamics, developed methods for identifying limit cycle oscillations in large-dimensional (fluid) systems.
• Turbomachinery and aeroelasticity providing a better understanding of fundamental complex fluid dynamics and cutting-edge models for predicting, identifying and characterizing the response of blisks and flade systems through integrated experimental & computational approaches.
• Structural health monitoring & sensing providing increased sensibility / capabilities by the discovery, characterization and exploitation of sensitivity vector fields, smart system interrogation through nonlinear feedback excitation, nonlinear minimal rank perturbation and system augmentation, pattern recognition for attractors, damage detection using bifurcation morphing.

Thomas Schmidt

By |

The current goal of our research is to learn enough about the physiology and ecology of microbes and microbial communities in the gut that we are able to engineer the gut microbiome to improve human health. The first target of our engineering is the production of butyrate – a common fermentation product of some gut microbes that is essential for human health. Butyrate is the preferred energy source for mitochondria in the epithelial cells lining the gut and it also regulates their gene expression.

One of the most effective ways to influence the composition and metabolism of the gut microbiota is through diet. In an interventional study, we have tracked responses in the composition and fermentative metabolism of the gut microtiota in >800 healthy individuals. Emerging patterns suggest several configurations of the microbiome that can result in increased production of butyrate acid. We have isolated the microbes that form an anaerobic food web to convert dietary fiber to butyrate and continue to make discoveries about their physiology and interactions. Based on these results, we have initiated a clinical trial in which we are hoping to prevent the development of Graft versus Host Disease following bone marrow transplants by managing butyrate production by the gut microbiota.

We are also beginning to track hundreds of other metabolites from the gut microbiome that may influence human health. We use metagenomes and metabolomes to identify patterns that link the microbiota with their metabolites and then test those models in human organoids and gnotobiotic mice colonized with synthetic communities of microbes. This blend of wet-lab research in basic microbiology, data science and in ecology is moving us closer to engineering the gut microbiome to improve human health.

Maureen Sartor

By |

My lab has two main areas of focus: molecular characteristics of head and neck cancer, and the intersection of regulatory genomics and pathway analysis. With head and neck cancer, we study tumor subtypes and biomarkers of prognosis, treatment response, and recurrence. We perform integrative omics analyses, dimension reduction methods, and prediction techniques, with the ultimate goal of identifying patient subsets who would benefit from either an additional targeted treatment or de-escalated treatment to increase quality of life. For regulatory genomics and pathway analysis, we develop statistical tests taking into account important covariates and other variables for weighting observations.

Carlos Aguilar

By |

The Aguilar group is focused understanding transcriptional and epigenetic mechanisms of skeletal muscle stem cells in diverse contexts such as regeneration after injury and aging. We focus on this area because there are little to no therapies for skeletal muscle after injury or aging. We use various types of in-vivo and in-vitro models in combination with genomic assays and high-throughput sequencing to study these molecular mechanisms.

Xu Shi

By |

My methodological research focus on developing statistical methods for routinely collected healthcare databases such as electronic health records (EHR) and claims data. I aim to tackle the unique challenges that arise from the secondary use of real-world data for research purposes. Specifically, I develop novel causal inference methods and semiparametric efficiency theory that harness the full potential of EHR data to address comparative effectiveness and safety questions. I develop scalable and automated pipelines for curation and harmonization of EHR data across healthcare systems and coding systems.

Lisa Levinson

By |

My research interests are in natural language semantics and psycholinguistics, focusing on verbs. I conduct behavioral psycholinguistic experiments with methodologies such as self-paced reading and maze tasks, as well as surveys of linguistic and semantic judgments. I also study semantic variation using corpora and datasets such as the Twitter Decahose, to better understand how words have developed diverging meanings in different communities, age groups, or regions. I use primarily R and Python to collect, manage, and analyze data. I direct the UM WordLab in the linguistics department, working with students (especially undergraduates) on experimental and computational research focusing on lexical representations.

Anthony Vanky

By |

Anthony Vanky develops and applies data science and computational methods to design, plan, evaluate cities, emphasizing their applications to urban planning and design. Broadly, his work focuses on the domains of transportation and human mobility; social behaviors and urban space; policy evaluation; quantitative social sciences; and the evaluation of urban form. Through this work, he has extensively collaborated with public and private partners. In addition, he considers creative approaches toward data visualization, public engagement and advocacy, and research methods.

 

Anthony Vanky’s Cityways project analyzed 2.2 million trips from 135,000 people over one year to understand the factors that influence outdoor pedestrian path choice. Factors considered included weather, urban morphology, businesses, topography, traffic, the presence of green spaces, among others.

Wenhao Sun

By |

We are interested in resolving outstanding fundamental scientific problems that impede the computational materials design process. Our group uses high-throughput density functional theory, applied thermodynamics, and materials informatics to deepen our fundamental understanding of synthesis-structure-property relationships, while exploring new chemical spaces for functional technological materials. These research interests are driven by the practical goal of the U.S. Materials Genome Initiative to accelerate materials discovery, but whose resolution requires basic fundamental research in synthesis science, inorganic chemistry, and materials thermodynamics.

Robert Manduca

By |

Professor Manduca’s research focuses on urban and regional economic development, asking why some cities and regions prosper while others decline, how federal policy influences urban fortunes, and how neighborhood social and economic conditions shape life outcomes. He studies these topics using computer simulations, spatial clustering methods, network analysis, and data visualization.

In other work he explores the consequences of rising income inequality for various aspects of life in the United States, using descriptive methods and simulations applied to Census microdata. This research has shown how rising inequality has lead directly to lower rates of upward mobility and increases in the racial income gap.

9.9.2020 MIDAS Faculty Research Pitch Video.

Screenshot from “Where Are The Jobs?” visualization mapping every job in the United States based on the unemployment insurance records from the Census LODES data. http://robertmanduca.com/projects/jobs.html

Yulia Sevryugina

By |

Study of Pandemic Publishing: How Scholarly Literature is Affected by COVID-19 Pandemic
This project addresses the quality of recently published COVID-19 publications. With the COVID-19 pandemic, researchers publish a lot their research as preprints. And while preprints are an important development in scholarly publishing, they are works in progress that need further refinement to become a more rigorous final product. Scholarly publishers are also taking initiatives to accelerate publication process, for example, by asking reviewers to curtail requests for additional experiments upon revisions. Sacrificing rigor for haste inevitably increases the likelihood of article correction and retraction, leading to spread of false information within supposedly trustworthy sources that have a peer-reviewing process in place to ensure proper verification. I study the quality of COVID-19 related scholarly works by using CADRE’s datasets to identify signs of incoherency, irreproducibility, and haste.

9.9.2020 MIDAS Faculty Research Pitch Video.