Lucia Cevidanes

By |

We have developed and tested machine learning approaches to integrate quantitative markers for diagnosis and assessment of progression of TMJ OA, as well as extended the capabilities of 3D Slicer4 into web-based tools and disseminated open source image analysis tools. Our aims use data processing and in-depth analytics combined with learning using privileged information, integrated feature selection, and testing the performance of longitudinal risk predictors. Our long term goals are to improve diagnosis and risk prediction of TemporoMandibular Osteoarthritis in future multicenter studies.

The Spectrum of Data Science for Diagnosis of Osteoarthritis of the Temporomandibular Joint

Amy Pienta

By |

My research at ICPSR is developing ingest and curation workflows for new data types (including EEG) to ensure these data are Findable, Accessible, Interoperable, and Reusable (FAIR) within data repositories.

My funded projects and programs:
National Addiction and HIV Data Archive Program (NAHDAP) funded by the National Institute on Drug Abuse (NIDA)
Health and Medical Care Archive funded by Robert Wood Johnson Foundation (RWJF)
Archive of Data on Disability to Enhance Policy and research (ADDEP) funded by NIH

Jing Sun

By |

My areas of interest are control, estimation, and optimization, with applications to energy systems in transportation, automotive, and marine domains. My group develops model-based and data-driven tools to explore underlying system dynamics and understand the operational environments. We develop computational frameworks and numerical algorithms to achieve real-time optimization and explore connectivity and data analytics to reduce uncertainties and improve performance through predictive control and planning.

Nicole Seiberlich

By |

My research involves developing novel data collection strategies and image reconstruction techniques for Magnetic Resonance Imaging. In order to accelerate data collection, we take advantage of features of MRI data, including sparsity, spatiotemporal correlations, and adherence to underlying physics; each of these properties can be leveraged to reduce the amount of data required to generate an image and thus speed up imaging time. We also seek to understand what image information is essential for radiologists in order to optimize MRI data collection and personalize the imaging protocol for each patient. We deploy machine learning algorithms and optimization techniques in each of these projects. In some of our work, we can generate the data that we need to train and test our algorithms using numerical simulations. In other portions, we seek to utilize clinical images, prospectively collected MRI data, or MRI protocol information in order to refine our techniques.

We seek to develop technologies like cardiac Magnetic Resonance Fingerprinting (cMRF), which can be used to efficiently collect multiple forms of information to distinguish healthy and diseased tissue using MRI. By using rapid methods like cMRF, quantitative data describing disease processes can be gathered quickly, enabling more and sicker patients can be assessed via MRI. These data, collected from many patients over time, can also be used to further refine MRI technologies for the assessment of specific diseases in a tailored, patient-specific manner.

Sol Bermann

By |

I am interested in the intersection of big data, data science, privacy, security, public policy, and law. At U-M, this includes co-convening the Dissonance Event Series, a multi-disciplinary collaboration of faculty and graduate students that explore the confluence of technology, policy, privacy, security, and law. I frequently guest lecture on these subject across campus, including at the School of Information, Ford School of Public Policy, and the Law School.

Niccolò Meneghetti

By |

Dr. Niccolò Meneghetti is an Assistant Professor of Computer and Information Science at the University of Michigan-Dearborn.
His major research interests are in the broad area of database systems, with primary focus on probabilistic databases, statistical relational learning and uncertain data management.

Birhanu Eshete

By |

I study cybercrime using data-driven methods to analyze, characterize, and measure the infrastructure and modus operandi used by criminal activities on the Internet. In particular, I focus on collection, analysis, and semantic characterization of cyber threat intelligence that comes in many shapes and forms (e.g., natural language, network traffic, system audit logs). The ultimate goal is to learn insights that will inform decisions on building robust defense against online criminal activities that involve threats such as ransomware, exploit kits, and botnets. To achieve these goals, I find graph theory and analytics, machine learning (deep learning), longitudinal analysis, and causality inference to be the natural methods. I also study the training and deployment of cyber threat classification/prediction systems in adversarial settings.

From behavioral fingerprinting and detection of cybercrime toolkits to analytics and detection of online cyber threats; from semantic characterization of cyber threat intelligence to detection and forensics of advanced cyber attacks, machine learning, graph theory and analytics, graph isomorphism, and causal inference serve as the core ingredients to build robust defense against cyber threats.

John E Marcotte

By |

John E. Marcotte, PhD is a statistician and data security expert. His research concerns data sharing, data security, data management, disclosure, health policy, nursing staffing and patient outcomes. He has over 25 years of experience implementing computing systems and performing quantitative analysis. During his career, Marcotte has served as a quantitative researcher, biostatistician, data archivist, data security officer and computing director. Among Marcotte’s statistical fortes are linear and logistic regression, survival analysis and sampling while his computing specialties include secure systems, high performance systems and numerical methods. He has collaborated with social and natural scientists as well as nurses and physicians. Marcotte regularly presents at professional conferences and contributes to invited panels on data security and disclosure. He has formal training in Demography, Statistics and Computer Science.

Research Data Security Options

Aaron A. King

By |

The long temporal and large spatial scales of ecological systems make controlled experimentation difficult and the amassing of informative data challenging and expensive. The resulting sparsity and noise are major impediments to scientific progress in ecology, which therefore depends on efficient use of data. In this context, it has in recent years been recognized that the onetime playthings of theoretical ecologists, mathematical models of ecological processes, are no longer exclusively the stuff of thought experiments, but have great utility in the context of causal inference. Specifically, because they embody scientific questions about ecological processes in sharpest form—making precise, quantitative, testable predictions—the rigorous confrontation of process-based models with data accelerates the development of ecological understanding. This is the central premise of my research program and the common thread of the work that goes on in my laboratory.