Matias del Campo

By |

The goal of this project is the creation of a crucial building block of the research on AI and Architecture – a database of 3D models necessary to successfully run Artificial Neural Networks in 3D. This database is part of the first stepping-stones for the research at the AR2IL (Architecture and Artificial Intelligence Laboratory), an interdisciplinary Laboratory between Architecture (represented by Taubman College of Architecture of Urban Planning), Michigan Robotics, and the CS Department of the University of Michigan. A Laboratory dedicated to research specializing in the development of applications of Artificial Intelligence in the field of Architecture and Urban Planning. This area of inquiry has experienced an explosive growth in recent years (triggered in part by research conducted at UoM), as evidenced for example by the growth in papers dedicated to AI applications in architecture, as well as in the investment of the industry in this area. The research funded by this proposal would secure the leading position of Taubman College and the University of Michigan in the field of AI and Architecture. This proposal would also address the current lack of 3D databases that are specifically designed for Architecture applications.

The project “Generali Center’ presents itself as an experiment in the combination of Machine Learning processes capable of learning the salient features of a specific architecture style – in this case, Brutalism- in order to generatively perform interpolations between the data points of the provided dataset. These images serve as the basis of a pixel projection approach that results in a 3D model.

Elizabeth F. S. Roberts

By |

“Neighborhood Environments as Socio-Techno-bio Systems: Water Quality, Public Trust, and Health in Mexico City (NESTSMX)” is an NSF-funded multi-year collaborative interdisciplinary project that brings together experts in environmental engineering, anthropology, and environmental health from the University of Michigan and the Instituto Nacional de Salud Pública. The PI is Elizabeth Roberts (anthropology), and the co-PIs are Brisa N. Sánchez (biostatistics), Martha M Téllez-Rojo (public health), Branko Kerkez (environmental engineering), and Krista Rule Wigginton (civil and environmental engineering). Our overarching goal for NESTSMX is to develop methods for understanding neighborhoods as “socio-techno-bio systems” and to understand how these systems relate to people’s trust in (or distrust of) their water. In the process, we will collectively contribute to our respective fields of study while we learn how to merge efforts from different disciplinary backgrounds.
NESTSMX works with families living in Mexico City, that participate in an ongoing longitudinal birth-cohort chemical-exposure study (ELEMENT (Early Life Exposures in Mexico to ENvironmental Toxicants, U-M School of Public Health). Our research involves ethnography and environmental engineering fieldwork which we will combine with biomarker data previously gathered by ELEMENT. Our focus will be on the infrastructures and social structures that move water in and out of neighborhoods, households, and bodies.

Testing Real-Time Domestic Water Sensors in Mexico City

Testing Real-Time Domestic Water Sensors in Mexico City

Fabian Pfeffer

By |

My research investigates social inequality and its maintenance across time and generations. Current projects focus on wealth inequality and its consequences for the next generation, the institutional context of social mobility processes and educational inequality in the United States and other industrialized countries. I also help expand the social science data infrastructure and quantitative methods needed to address questions on inequality and mobility. I serve as Principal Investigator of the Wealth and Mobility (WAM) study as well as Co-Investigator of the Panel Study of Income Dynamics (PSID). As such, my research draws on and helps construct nationally representative survey data as well as full-population administrative data. My methodological work has been focused on causal inference, multiple imputation, and measurement error.

Matthew VanEseltine

By |

Dr. VanEseltine is a sociologist and data scientist working with large-scale administrative data for causal and policy analysis. His interests include studying the effects of scientific infrastructure, training, and initiatives, as well as the development of open, sustainable, and replicable systems for data construction, curation, and dissemination. As part of the Institute for Research on Innovation and Science (IRIS), he contributes to record linkage and data improvements in the research community releases of UMETRICS, a data system built from integrated records on federal award funding and spending from dozens of American universities. Dr. VanEseltine’s recent work includes studying the impacts of COVID-19 on academic research activity.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021

 

Daniel P. Keating

By |

The primary tools currently in use are variations of linear models (regression, MLM, SEM, and so on) as we pursue the initial aims of the NICHD funded work. We are expanding into new areas that require new tools. Our adolescent sample is diverse, selected through quota sampling of high schools close enough to UM to afford the use of neuroimaging tools, but it is not population representative. To overcome this, we have begun work to calibrate our sample with the nationally representative Monitoring the Future study, implementing pseudo-weighting and multilevel regression and post-stratification. To enable much more powerful analyses, we are aiming toward the harmonization of multiple, high quality longitudinal databases from adolescence through early adulthood. This would benefit traditional analyses by allowing cross-validation with high power, but also provide opportunities for newer data science tools such as computational modeling and machine learning approaches.

Ken Kollman

By |

I have been involved in the building of data infrastructure in the study of elections, political systems, violence, geospatial units, demographics, and topography. This infrastructure will eventually lead to the integration of data across many domains in the social, health, population, and behavioral sciences. My core research interests are in elections and political organizations.

Sara Lafia

By |

I am a Research Fellow in the Inter-university Consortium for Political and Social Research (ICPSR) at the University of Michigan. My research is currently supported by a NSF project, Developing Evidence-based Data Sharing and Archiving Policies, where I am analyzing curation activities, automatically detecting data citations, and contributing to metrics for tracking the impact of data reuse. I hold a Ph.D. in Geography from UC Santa Barbara and I have expertise in GIScience, spatial information science, and urban planning. My interests also include the Semantic Web, innovative GIS education, and the science of science. I have experience deploying geospatial applications, designing linked data models, and developing visualizations to support data discovery.

J. Trent Alexander

By |

J. Trent Alexander is the Associate Director and a Research Professor at ICPSR in the Institute for Social Research at the University of Michigan. Alexander is a historical demographer and builds social science data infrastructure. He is currently leading the Decennial Census Digitization and Linkage Project (joint with Raj Chetty and Katie Genadek) and ResearchDataGov (joint with Lynette Hoelter). Prior to coming to ICPSR in 2017, Alexander initiated the Census Longitudinal Infrastructure Project at the Census Bureau and managed the Integrated Public Use Microdata Series (IPUMS) at the University of Minnesota.