Andrew Krumm

By |

My research examines the ways in which individuals and organizations use data to improve. Quality improvement and data-intensive research approaches are central to my work along with forming equitable collaborations between researchers and frontline workers. Prior to joining the Department of Learning Health Sciences, I was the Director of Learning Analytics Research at Digital Promise and a Senior Education Researcher in the Center for Technology in Learning at SRI International. At both organizations, I developed data-intensive research-practice partnerships with educational organizations of all types. As a learning scientist working at the intersection of data-intensive research and quality improvement, my colleagues and I have developed tools and strategies (e.g., cloud-based, open source tools for engaging in collaborative exploratory data analyses) that partnerships between researchers and practitioners can use to measure learning and improve learning environments.

This is an image that my colleagues and I, over multiple projects, developed to communicate the multiple steps involved in collaborative data-intensive improvement. The “organize” and “understand” phases are about asking the right questions before the work of data analysis begins: “co-develop” and “test” are about taking action following an analysis. Along with identifying common phases, we have also observed the importance of the following supporting conditions: a trusting partnership, the use of formal improvement methods, common data workflows, and intentional efforts to support the learning of everyone involved in the project.

Libby Hemphill

By |

Dr. Hemphill studies conversations in social media and aims to promote just access to social media spaces and their data. She uses computational approaches to modeling political topics, predicting and addressing toxicity in online discussions, and tracing linguistic adaptations among extremists. She also studies digital data curation and is especially interested in ways to measure and model data reuse so that we can make informed decisions about how to allocate data resources.

Andrea Thomer

By |

Andrea Thomer is an assistant professor of information at the University of Michigan School of Information. She conducts research in the areas of data curation, museum informatics, earth science and biodiversity informatics, information organization, and computer supported cooperative work. She is especially interested in how people use and create data and metadata; the impact of information organization on information use; issues of data provenance, reproducibility, and integration; and long-term data curation and infrastructure sustainability. She is studying a number of these issues through the “Migrating Research Data Collections” project – a recently awarded Laura Bush 21st Century Librarianship Early Career Research Grant from the Institute of Museum and Library Services. Dr. Thomer received her doctorate in Library and Information Science from the School of Information Sciences at the University of Illinois at Urbana‐Champaign in 2017.

Aaron A. King

By |

The long temporal and large spatial scales of ecological systems make controlled experimentation difficult and the amassing of informative data challenging and expensive. The resulting sparsity and noise are major impediments to scientific progress in ecology, which therefore depends on efficient use of data. In this context, it has in recent years been recognized that the onetime playthings of theoretical ecologists, mathematical models of ecological processes, are no longer exclusively the stuff of thought experiments, but have great utility in the context of causal inference. Specifically, because they embody scientific questions about ecological processes in sharpest form—making precise, quantitative, testable predictions—the rigorous confrontation of process-based models with data accelerates the development of ecological understanding. This is the central premise of my research program and the common thread of the work that goes on in my laboratory.

Patrick Schloss

By |

The Schloss lab is broadly interested in beneficial and pathogenic host-microbiome interactions with the goal of improving our understanding of how the microbiome can be used to reach translational outcomes in the prevention, detection, and treatment of colorectal cancer, Crohn’s disease, and Clostridium difficile infection. To address these questions, we test traditional ecological theory in the microbial context using a systems biology approach. Specifically, the laboratory specializes in using studies involving human subjects and animal models to understand how biological diversity affects community function using a variety of culture-independent genomics techniques including sequencing 16S rRNA gene fragments, metagenomics, and metatranscriptomics. In addition, they use metabolomics to understand the functional role of the gut microbiota in states of health and disease. To support these efforts, they develop and apply bioinformatic tools to facilitate their analysis. Most notable is the development of the mothur software package (https://www.mothur.org), which is one of the most widely used tools for analyzing microbiome data and has been cited more than 7,300 times since it was initially published in 2009. The Schloss lab deftly merges the ability to collect data to answer important biological questions using cutting edge wet-lab techniques and computational tools to synthesize these data to answer their biological questions.

Given the explosion in microbiome research over the past 15 years, the Schloss lab has also stood at the center of a major effort to train interdisciplinary scientists in applying computational tools to study complex biological systems. These efforts have centered around developing reproducible research skills and applying modern data visualization techniques. An outgrowth of these efforts at the University of Michigan has been the institutionalization of The Carpentries organization on campus (https://carpentries.org), which specializes in peer-to-peer instruction of programming tools and techniques to foster better reproducibility and build a community of practitioners.

The Schloss lab uses computational tools to integrate multi-omics tools in a culture-independent approach to understand how bacteria interact with each other and their host to drive processes such as colorectal cancer and susceptibility to Clostridium difficile infections.

Timothy McKay

By |

I am a data scientist, with extensive and various experience drawing inference from large data sets. In education research, I work to understand and improve postsecondary student outcomes using the rich, extensive, and complex digital data produced in the course of educating students in the 21st century. In 2011, we launched the E2Coach computer tailored support system, and in 2014, we began the REBUILD project, a college-wide effort to increase the use of evidence-based methods in introductory STEM courses. In 2015, we launched the Digital Innovation Greenhouse, an education technology accelerator within the UM Office of Digital Education and Innovation. In astrophysics, my main research tools have been the Sloan Digital Sky Survey, the Dark Energy Survey, and the simulations which support them both. We use these tools to probe the growth and nature of cosmic structure as well as the expansion history of the Universe, especially through studies of galaxy clusters. I have also studied astrophysical transients as part of the Robotic Optical Transient Search Experiment.

This image, drawn from a network analysis of 127,653,500 connections among 57,752 students, shows the relative degrees of connection for students in the 19 schools and colleges which constitute the University of Michigan. It provides a 30,000 foot overview of the connection and isolation of various groups of students at Michigan. (Drawn from the senior thesis work of UM Computer Science major Kar Epker)

This image, drawn from a network analysis of 127,653,500 connections among 57,752 students, shows the relative degrees of connection for students in the 19 schools and colleges which constitute the University of Michigan. It provides a 30,000 foot overview of the connection and isolation of various groups of students at Michigan. (Drawn from the senior thesis work of UM Computer Science major Kar Epker)

Mahesh Agarwal

By |

Prof. Agarwal’s is primarily interested in number theory, in particular in p-adic L-functions, Bloch-Kato conjecture and automorphic forms. His secondary research interests are polynomials, geometry and math education, Machine Learning, and healthcare analytics.

Ivo D. Dinov

By |

Dr. Ivo Dinov directs the Statistics Online Computational Resource (SOCR), co-directs the multi-institutional Probability Distributome Project, and is an associate director for education of the Michigan Institute for Data Science (MIDAS).

Dr. Dinov is an expert in mathematical modeling, statistical analysis, computational processing and visualization of Big Data. He is involved in longitudinal morphometric studies of human development (e.g., Autism, Schizophrenia), maturation (e.g., depression, pain) and aging (e.g., Alzheimer’s and Parkinson’s diseases). Dr. Dinov is developing, validating and disseminating novel technology-enhanced pedagogical approaches for scientific education and active learning.

9.9.2020 MIDAS Faculty Research Pitch Video.

Analyzing Big observational data including thousands of Parkinson's disease patients based on tens-of-thousands signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements is challenging. We are developing Big Data representation strategies, implementing efficient algorithms and introducing software tools for managing, analyzing, modeling and visualizing large, complex, incongruent and heterogeneous data. Such service-oriented platforms and methodological advances enable Big Data Discovery Science and present existing opportunities for learners, educators, researchers, practitioners and policy makers.

Analyzing Big observational data including thousands of Parkinson’s disease patients based on tens-of-thousands signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements is challenging. We are developing Big Data representation strategies, implementing efficient algorithms and introducing software tools for managing, analyzing, modeling and visualizing large, complex, incongruent and heterogeneous data. Such service-oriented platforms and methodological advances enable Big Data Discovery Science and present existing opportunities for learners, educators, researchers, practitioners and policy makers.