Peter Song

Peter Song

By |

My research interests lie in two major fields: In the field of statistical methodology, my interests include data integration, distributed inference, federated learning and meta learning, high-dimensional statistics, mixed integer optimization, statistical machine learning, and spatiotemporal modeling. In the field of empirical study, my interests include bioinformatics, biological aging, epigenetics, environmental health sciences, nephrology, nutritional sciences, obesity, and statistical genetics.

Sally Oey

Sally Oey

By |

Sally Oey’s group is studying massive star populations and the escape of ionizing radiation from starburst galaxies and super star clusters. The group is at the forefront of establishing a new paradigm for massive-star feedback, where superwinds from compact young star clusters fail to launch. Members have used numerical simulations and image processing techniques to investigate such conditions for allowing ionizing radiation to penetrate the dense gas in star-forming clouds and the interstellar medium in “green pea” galaxies and resolved nearby starbursts. The ionizing radiation may originate from massive binaries and their products, thus group members are carrying out data mining of observational surveys and binary population synthesis models to study how binarity manifests in stellar populations.

Photograph of Alison Davis Rabosky

Alison Davis Rabosky

By |

Our research group studies how and why an organism’s traits (“phenotypes”) evolve in natural populations. Explaining the mechanisms that generate and regulate patterns of phenotypic diversity is a major goal of evolutionary biology: why do we see rapid shifts to strikingly new and distinct character states, and how stable are these evolutionary transitions across space and time? To answer these questions, we generate and analyze high-throughput “big data” on both genomes and phenotypes across the 18,000 species of reptiles and amphibians across the globe. Then, we use the statistical tools of phylogenetic comparative analysis, geometric morphometrics of 3D anatomy generated from CT scans, and genome annotation and comparative transcriptomics to understand the integrated trait correlations that create complex phenotypes. Currently, we are using machine learning and neural networks to study the color patterns of animals vouchered into biodiversity collections and test hypotheses about the ecological causes and evolutionary consequences of phenotypic innovation. We are especially passionate about the effective and accurate visualization of large-scale multidimensional datasets, and we prioritize training in both best practices and new innovations in quantitative data display.

Photograph of Nicholas Kotov

Nicholas Kotov

By |

Nicholas A. Kotov is Irving Langmuir Distinguished University Professor in Chemical Sciences at the University of Michigan. He is a pioneer of theoretical foundations and practical implementations of complex systems from ‘imperfect’ nanoparticles that offer a vast field for the application of data science and machine learning. Chiral nanostructures, biomimetic nanocomposites, and graph theoretical representations are the focal points in his current work.  Nicholas is a recipient of more than 60 awards and recognitions. Together with his students, Nicholas founded several startups that commercialized self-assembled nanostructures for the energy, healthcare, and automotive industry. Nicholas is a Fellow of the America Academy of Arts and Sciences and the National Academy of Inventors.  He is an advocate for scientists with disabilities.

Nate Sanders

Nate Sanders

By |

My research interests are broad, but generally center on the causes and consequences of biodiversity loss at local, regional, and global scales with an explicit focus on global change drivers. Our work has been published in Science, Nature, Science Advances, Global Change Biology, PNAS, AREES, TREE, and Ecology Letters among other journals. We are especially interested in using AI and machine learning to explore broad-scale patterns of biodiversity and phenotypic variation, mostly in ants.

Xiaoquan William Wen

Xiaoquan William Wen

By |

Xiaoquan (William) Wen is an Associate Professor of Biostatistics. He received his PhD in Statistics from the University of Chicago in 2011 and joined the faculty at the University of Michigan in the same year. His research centers on developing Bayesian and computational statistical methods to answer interesting scientific questions arising from genetics and genomics.

In the applied field,  he is  particularly interested in seeking statistically sound and computationally efficient solutions to scientific problems in the areas of genetics and functional genomics.
Quantifying tissue-specific expression quantitative trait loci (eQTLs) via Bayesian model comparison

Quantifying tissue-specific expression quantitative trait loci (eQTLs) via Bayesian model comparison

Matias del Campo

By |

The goal of this project is the creation of a crucial building block of the research on AI and Architecture – a database of 3D models necessary to successfully run Artificial Neural Networks in 3D. This database is part of the first stepping-stones for the research at the AR2IL (Architecture and Artificial Intelligence Laboratory), an interdisciplinary Laboratory between Architecture (represented by Taubman College of Architecture of Urban Planning), Michigan Robotics, and the CS Department of the University of Michigan. A Laboratory dedicated to research specializing in the development of applications of Artificial Intelligence in the field of Architecture and Urban Planning. This area of inquiry has experienced an explosive growth in recent years (triggered in part by research conducted at UoM), as evidenced for example by the growth in papers dedicated to AI applications in architecture, as well as in the investment of the industry in this area. The research funded by this proposal would secure the leading position of Taubman College and the University of Michigan in the field of AI and Architecture. This proposal would also address the current lack of 3D databases that are specifically designed for Architecture applications.

The project “Generali Center’ presents itself as an experiment in the combination of Machine Learning processes capable of learning the salient features of a specific architecture style – in this case, Brutalism- in order to generatively perform interpolations between the data points of the provided dataset. These images serve as the basis of a pixel projection approach that results in a 3D model.

Brian Lin

Brian Lin

By |

Dr. Brian Lin has 12 years of experience in automotive research at UMTRI after his Ph.D. His current research is focused on mining naturalistic driving data, evaluating driver assistance systems, modeling driver performance and behavior, and estimating driver distraction and workload, using statistical methods, classification, clustering, and survival analysis. His most recent work includes classifying human driver’s decision for a discretionary lane change and traversal at unsignalized intersections, driver’s response to lead vehicle’s movement, and subjective acceptance on automated lane change feature. Dr. Lin also has much experience applying data analytic methods to evaluate automotive system prototypes, including auto-braking, lane departure, driver-state monitoring, electronic head units, car-following and curve-assist systems on level-2 automation, and lane-change and intersection assist on L3 automation on public roads, test tracks, or driving simulators. He is also familiar with the human factors methods to investigate driver distraction, workload, and human-machine interaction with in-vehicle technologies and safety features. He serves as a peer reviewer for Applied Ergonomics, Behavior Research Methods, IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Intelligent Vehicles and Transportation Research Part F.

Ivy F. Tso

Ivy F. Tso

By |

My lab researches how the human brain processes social and affective information and how these processes are affected in psychiatric disorders, especially schizophrenia and bipolar disorder. We use behavioral, electrophysiological (EEG), neuroimaging (functional MRI), eye tracking, brain stimulation (TMS, tACS), and computational methods in our studies. One main focus of our work is building and validating computational models based on intensive, high-dimensional subject-level behavior and brain data to explain clinical phenomena, parse mechanisms, and predict patient outcome. The goal is to improve diagnostic and prognostic assessment, and to develop personalized treatments.

Brain activation (in parcellated map) during social and face processing.