J.J. Prescott

By |

Broadly, I study legal decision making, including decisions related to crime and employment. I typically use large social science data bases, but also collect my own data using technology or surveys.

Wentao Wang

By |

Dr. Wentao Wang is currently a research faculty in the Department of Civil and Environmental Engineering at the University of Michigan, Ann Arbor, MI, United States. He obtained his Ph.D. degree in 2016 from Harbin Institute of Technology, supervised by Prof. Hui Li and Prof. Jerome P. Lynch

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021

 

Lia Corrales

By |

My PhD research focused on identifying the size and mineralogical composition of interstellar dust through X-ray imaging of dust scattering halos to X-ray spectroscopy of bright objects to study absorption from intervening material. Over the course of my PhD I also developed an open source, object oriented approach to computing extinction properties of particles in Python that allows the user to change the scattering physics models and composition properties of dust grains very easily. In many cases, the signal I look for from interstellar dust requires evaluating the observational data on the 1-5% level. This has required me to develop a deep understanding of both the instrument and the counting statistics (because modern-day X-ray instruments are photon counting tools). My expertise led me to a postdoc at MIT, where I developed techniques to obtain high resolution X-ray spectra from low surface brightness (high background) sources imaged with the Chandra X-ray Observatory High Energy Transmission Grating Spectrometer. I pioneered these techniques in order to extract and analyze the high resolution spectrum of Sgr A*, our Galaxy’s central supermassive black hole (SMBH), producing a legacy dataset with a precision that will not be replaceable for decades. This dataset will be used to understand why Sgr A* is anomalously inactive, giving us clues to the connection between SMBH activity and galactic evolution. In order to publish the work, I developed an open source software package, pyXsis (github.com/eblur/pyxsis) in order to model the low signal-to-noise spectrum of Sgr A* simultaneously with a non-physical parameteric model of the background spectrum (Corrales et al., 2020). As a result of my vocal advocacy for Python compatible software tools and a modular approach to X-ray data analysis, I became Chair for HEACIT (which stands for “High Energy Astrophysics Codes, Interfaces, and Tools”), a new self-appointed working group of X-ray software engineers and early career scientists interested in developing tools for future X-ray observatories. We are working to identify science cases that high energy astronomers find difficult to support with the current software libraries, provide a central and publicly available online forum for tutorials and discussion of current software libraries, and develop a set of best practices for X-ray data analysis. My research focus is now turning to exoplanet atmospheres, where I hope to measure absorption from molecules and aerosols in the UV. Utilizing UM access to the Neil Gehrels Swift Observatory, I work to observe the dip in a star’s brightness caused by occultation (transit) from a foreground planet. Transit depths are typically <1%, and telescopes like Swift were not originally designed with transit measurements (i.e., this level of precision) in mind. As a result, this research strongly depends on robust methods of scientific inference from noisy datasets.

cirx1_heinz_pretty_image

As a graduate student, I attended some of the early “Python in Astronomy” workshops. While there, I wrote Jupyter Notebook tutorials that helped launch the Astropy Tutorials project (github.com/astropy/astropy-tutorials), which expanded to Learn Astropy (learn.astropy.org), for which I am a lead developer. Since then, I have also become a leader within the larger Astropy collaboration. I have helped develop the Astropy Project governance structure, hired maintainers, organized workshops, and maintained an AAS presence for the Astropy Project and NumFocus (the non-profit umbrella organization that works to sustain open source software communities in scientific computing) for the last several years. As a woman of color in a STEM field, I work to clear a path by teaching the skills I have learned along the way to other underrepresented groups in STEM. This year I piloted WoCCode (Women of Color Code), an online network and webinar series for women from minoritized backgrounds to share expertise and support each other in contributing to open source software communities.

Ben Green

By |

Ben studies the social and political impacts of government algorithms. This work falls into several categories. First, evaluating how people make decisions in collaboration with algorithms. This work involves developing machine learning algorithms and studying how people use them in public sector prediction and decision settings. Second, studying the ethical and political implications of government algorithms. Much of this work draws on STS and legal theory to interrogate topics such as algorithmic fairness, smart cities, and criminal justice risk assessments. Third, developing algorithms for public sector applications. In addition to academic research, Ben spent a year developing data analytics tools as a data scientist for the City of Boston.

Sardar Ansari

By |

I build data science tools to address challenges in medicine and clinical care. Specifically, I apply signal processing, image processing and machine learning techniques, including deep convolutional and recurrent neural networks and natural language processing, to aid diagnosis, prognosis and treatment of patients with acute and chronic conditions. In addition, I conduct research on novel approaches to represent clinical data and combine supervised and unsupervised methods to improve model performance and reduce the labeling burden. Another active area of my research is design, implementation and utilization of novel wearable devices for non-invasive patient monitoring in hospital and at home. This includes integration of the information that is measured by wearables with the data available in the electronic health records, including medical codes, waveforms and images, among others. Another area of my research involves linear, non-linear and discrete optimization and queuing theory to build new solutions for healthcare logistic planning, including stochastic approximation methods to model complex systems such as dispatch policies for emergency systems with multi-server dispatches, variable server load, multiple priority levels, etc.

Xu Wang

By |

My research is to support more people learn in effective ways. I draw techniques and theories from Human-Computer Interaction, Learning Sciences, and Artificial Intelligence to develop computational methods and systems to support scalable teaching and learning. There are several directions in my research that draw on data science techniques and also contribute to interdisciplinary data science research, 1) data-driven authoring techniques of intelligent tutoring systems, with application domains in UX education and data science education 2) AI-augmented instructional design and the use Human-AI collaborative techniques in instructional design.

View MIDAS Faculty Research Pitch, Fall 2021

Sara Lafia

By |

I am a Research Fellow in the Inter-university Consortium for Political and Social Research (ICPSR) at the University of Michigan. My research is currently supported by a NSF project, Developing Evidence-based Data Sharing and Archiving Policies, where I am analyzing curation activities, automatically detecting data citations, and contributing to metrics for tracking the impact of data reuse. I hold a Ph.D. in Geography from UC Santa Barbara and I have expertise in GIScience, spatial information science, and urban planning. My interests also include the Semantic Web, innovative GIS education, and the science of science. I have experience deploying geospatial applications, designing linked data models, and developing visualizations to support data discovery.

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.

Nicholas Henderson

By |

My research primarily focuses on the following main themes: 1) development of methods for risk prediction and analyzing treatment effect heterogeneity, 2) Bayesian nonparametrics and Bayesian machine learning methods with a particular emphasis on the use of these methods in the context of survival analysis, 3) statistical methods for analyzing heterogeneity in risk-benefit profiles and for supporting individualized treatment decisions, and 4) development of empirical Bayes and shrinkage methods for high-dimensional statistical applications. I am also broadly interested in collaborative work in biomedical research with a focus on the application of statistics in cancer research.