Matias del Campo

By |

The goal of this project is the creation of a crucial building block of the research on AI and Architecture – a database of 3D models necessary to successfully run Artificial Neural Networks in 3D. This database is part of the first stepping-stones for the research at the AR2IL (Architecture and Artificial Intelligence Laboratory), an interdisciplinary Laboratory between Architecture (represented by Taubman College of Architecture of Urban Planning), Michigan Robotics, and the CS Department of the University of Michigan. A Laboratory dedicated to research specializing in the development of applications of Artificial Intelligence in the field of Architecture and Urban Planning. This area of inquiry has experienced an explosive growth in recent years (triggered in part by research conducted at UoM), as evidenced for example by the growth in papers dedicated to AI applications in architecture, as well as in the investment of the industry in this area. The research funded by this proposal would secure the leading position of Taubman College and the University of Michigan in the field of AI and Architecture. This proposal would also address the current lack of 3D databases that are specifically designed for Architecture applications.

The project “Generali Center’ presents itself as an experiment in the combination of Machine Learning processes capable of learning the salient features of a specific architecture style – in this case, Brutalism- in order to generatively perform interpolations between the data points of the provided dataset. These images serve as the basis of a pixel projection approach that results in a 3D model.

Brian Lin

By |

Dr. Brian Lin has 12 years of experience in automotive research at UMTRI after his Ph.D. His current research is focused on mining naturalistic driving data, evaluating driver assistance systems, modeling driver performance and behavior, and estimating driver distraction and workload, using statistical methods, classification, clustering, and survival analysis. His most recent work includes classifying human driver’s decision for a discretionary lane change and traversal at unsignalized intersections, driver’s response to lead vehicle’s movement, and subjective acceptance on automated lane change feature. Dr. Lin also has much experience applying data analytic methods to evaluate automotive system prototypes, including auto-braking, lane departure, driver-state monitoring, electronic head units, car-following and curve-assist systems on level-2 automation, and lane-change and intersection assist on L3 automation on public roads, test tracks, or driving simulators. He is also familiar with the human factors methods to investigate driver distraction, workload, and human-machine interaction with in-vehicle technologies and safety features. He serves as a peer reviewer for Applied Ergonomics, Behavior Research Methods, IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions on Intelligent Vehicles and Transportation Research Part F.

Trishul Kapoor

By |

Our research is focused on Post ICU pain syndromes (PIPS). PIPS exhibit distinct phenotypic presentations and can be predicted by intra-ICU parameters. Our primary goal is to be able to predict post-ICU opioid use based on intra-ICU parameters. We utilize a data-driven characterization of post-ICU pain syndromes will utilize unsupervised clustering algorithms including DBSCAN and spectral clustering. Prediction of post-discharge pain severity, likelihood of specific pain presentations, and post-discharge opioid use will be achieved using logistic LASSO, random forests, and neural networks. Specifically, these tests will utilize available ICU data to predict changes between pre-
and post-ICU pain severity, incidence of specific pain presentations, and incidence of opioid use.

This is a representation of enhancement of human cognition and clinical intelligence with artificial intelligence.

This is a representation of enhancement of human cognition and clinical intelligence with artificial intelligence.

Lubomir Hadjiyski

By |

Dr. Hadjiyski research interests include computer-aided diagnosis, artificial intelligence (AI), machine learning, predictive models, image processing and analysis, medical imaging, and control systems. His current research involves design of decision support systems for detection and diagnosis of cancer in different organs and quantitative analysis of integrated multimodality radiomics, histopathology and molecular biomarkers for treatment response monitoring using AI and machine learning techniques. He also studies the effect of the decision support systems on the physicians’ clinical performance.

Deena Costa

By |

Dr. Costa’s goal is to maximize survival and minimize morbidity for mechanically ventilated adults. She accomplishes this through her research on the organization and management of critical care. Specifically, her work identifies key structural and functional characteristics of ICU interprofessional teams that can be leveraged to improve the delivery of high quality, complex care to mechanically ventilated patients. She is a trained health services researcher with clinical expertise in adult critical care nursing. Her work care has been published in leading journals such as JAMA, Chest, and Critical Care Medicine. Her current research examines ICU teamwork and patient outcomes, linking individual clinicians to individual patients using the Electronic Health Record, and using qualitative approaches to understand how to improve ICU teams. Her research has focused on ICU clinician staffing, well-being and psychological outcomes of ICU clinicians as a way to improve care and outcomes of ICU patients.

Gen Li

By |

Dr. Gen Li is an Assistant Professor in the Department of Biostatistics. He is devoted to developing new statistical methods for analyzing complex biomedical data, including multi-way tensor array data, multi-view data, and compositional data. His methodological research interests include dimension reduction, predictive modeling, association analysis, and functional data analysis. He also has research interests in scientific domains including microbiome and genomics.

Novel tree-guided regularization methods can identify important microbial features at different taxonomic ranks that are predictive of the clinical outcome.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021

 

Ben Green

By |

Ben studies the social and political impacts of government algorithms. This work falls into several categories. First, evaluating how people make decisions in collaboration with algorithms. This work involves developing machine learning algorithms and studying how people use them in public sector prediction and decision settings. Second, studying the ethical and political implications of government algorithms. Much of this work draws on STS and legal theory to interrogate topics such as algorithmic fairness, smart cities, and criminal justice risk assessments. Third, developing algorithms for public sector applications. In addition to academic research, Ben spent a year developing data analytics tools as a data scientist for the City of Boston.