Nancy Fleischer

By |

Dr. Fleischer’s research focuses on how the broader socioeconomic and policy environments impact health disparities and the health of vulnerable populations, in the U.S. and around the world. Through this research, her group employs various analytic techniques to examine data at multiple levels (country-level, state-level, and neighborhood-level), emphasizing the role of structural influences on individual health. Her group applies advanced epidemiologic, statistical, and econometric methods to this research, including survey methodology, longitudinal data analysis, hierarchical modeling, causal inference, systems science, and difference-in-difference analysis. Dr. Fleischer leads two NCI-funded projects focused on the impact of tobacco control policies on health equity in the U.S.

Robert Ploutz-Snyder

By |

My work falls into three general application areas. I am an applied (accredited) biostatistician with a strong team science motivation and I collaborate with scientists in primarily the biomedical sciences, contributing expertise in experimental design, statistical analysis/modeling, and data visualization. I have held faculty appointments in Schools of Medicine and Nursing, and also worked as a senior scientist in the Human Research Program at the NASA Johnson Space Center. I currently direct an Applied Biostatistics Laboratory and Data Management Core within the UM School of Nursing, and maintain several collaborative research programs within the School, at NASA, and with collaborators elsewhere.

Aditi Misra

By |

Transportation is the backbone of the urban mobility system and is one of the greatest sources of environmental emissions and pollutions. Making urban transportation efficient, equitable and sustainable is the main focus of my research. My students and I analyze small scale survey data as well as large scale spatiotemporal data to identify travel behavior trends and patterns at a disaggregate level using econometric methods, which we then scale up to the population level through predictive and statistical modeling. We also design our own data collection methods and instruments, be it a network of smart devices or stated preference experiments. Our expertise lies in identifying latent constructs that influence decisions and choices, which in turn dictate demands on the systems and subsystems. We use our expertise to design incentives and policy suggestions that can help promote sustainable and equitable multimodal transportation systems. Our team also uses data analytics, particularly classification and pattern recognition algorithms, to analyze crash context data and develop safety-critical scenarios for automated and connected vehicle (CAV) deployment. We have developed an online game based on such scenarios to promote safe shared mobility among teenagers and young adults and plan to expand research in that area. We are also currently expanding our research to explore the use of NN in context information synthesis.

This is a project where we used classification and Bayesian models to identify scenarios that are risky for pedestrians and bicyclists. We then developed an online game based on those scenarios for middle schoolers so that they are better prepared for shared road conflicts.

Sunghee Lee

By |

My research focuses on issues in data collection with hard-to-reach populations. In particular, she examines 1) nontraditional sampling approaches for minority or stigmatized populations and their statistical properties and 2) measurement error and comparability issues for racial, ethnic and linguistic minorities, which also have implications for cross-cultural research/survey methodology. Most recently, my research has been dedicated to respondent driven sampling that uses existing social networks to recruit participants in both face-to-face and Web data collection settings. I plan to expand my research scope in examining representation issues focusing on the racial/ethnic minority groups in the U.S. in the era of big data.

Nicole Seiberlich

By |

My research involves developing novel data collection strategies and image reconstruction techniques for Magnetic Resonance Imaging. In order to accelerate data collection, we take advantage of features of MRI data, including sparsity, spatiotemporal correlations, and adherence to underlying physics; each of these properties can be leveraged to reduce the amount of data required to generate an image and thus speed up imaging time. We also seek to understand what image information is essential for radiologists in order to optimize MRI data collection and personalize the imaging protocol for each patient. We deploy machine learning algorithms and optimization techniques in each of these projects. In some of our work, we can generate the data that we need to train and test our algorithms using numerical simulations. In other portions, we seek to utilize clinical images, prospectively collected MRI data, or MRI protocol information in order to refine our techniques.

We seek to develop technologies like cardiac Magnetic Resonance Fingerprinting (cMRF), which can be used to efficiently collect multiple forms of information to distinguish healthy and diseased tissue using MRI. By using rapid methods like cMRF, quantitative data describing disease processes can be gathered quickly, enabling more and sicker patients can be assessed via MRI. These data, collected from many patients over time, can also be used to further refine MRI technologies for the assessment of specific diseases in a tailored, patient-specific manner.

Yajuan Si

By |

My research lies in cutting-edge methodology development in streams of Bayesian statistics, complex survey inference, missing data imputation, causal inference, and data confidentiality protection. I have extensive collaboration experiences with health services researchers and epidemiologists to improve healthcare and public health practice, and have been providing statistical support to solve sampling and analysis issues on health and social science surveys.

Karen Alofs

By |

My research focuses on how environmental change, including climate, invasion and habitat destruction influences freshwater ecological communities across space and time. I am involved in a collaborative interdisciplinary project funded by a MIDAS Propelling Original Data Science (PODS) Grant: CHANGES: Collections, Heterogeneous data, And Next Generation Ecological Studies.We are developing protocols for integrating heterogeneous natural science datasets to investigate the impacts of environmental changes on species. Our project focuses on climate change impacts on inland lake fish communities across Michigan, drawing on more than a century’s worth of data and specimens archived at the University of Michigan Museum of Zoology (UMMZ) and the Institute for Fisheries Research (IFR), which is a cooperative unit of the Michigan Department of Natural Resources (DNR) Fisheries Division and the University of Michigan.

Hernán López-Fernández

By |

I am interested in the evolutionary processes that originate “mega-diverse” biotic assemblages and the role of ecology in shaping the evolution of diversity. My program studies the evolution of Neotropical freshwater fishes, the most diverse freshwater fish fauna on earth, with an estimate exceeding 7,000 species. My lab combines molecular phylogenetics and phylogeny-based comparative methods to integrate ecology, functional morphology, life histories and geography into analyses of macroevolutionary patterns of freshwater fish diversification. We are also comparing patterns of diversification across major Neotropical fish clades. Relying on fieldwork and natural history collections, we use methods that span

Andrea Thomer

By |

Andrea Thomer is an assistant professor of information at the University of Michigan School of Information. She conducts research in the areas of data curation, museum informatics, earth science and biodiversity informatics, information organization, and computer supported cooperative work. She is especially interested in how people use and create data and metadata; the impact of information organization on information use; issues of data provenance, reproducibility, and integration; and long-term data curation and infrastructure sustainability. She is studying a number of these issues through the “Migrating Research Data Collections” project – a recently awarded Laura Bush 21st Century Librarianship Early Career Research Grant from the Institute of Museum and Library Services. Dr. Thomer received her doctorate in Library and Information Science from the School of Information Sciences at the University of Illinois at Urbana‐Champaign in 2017.