Explore ARCExplore ARC

Xun Huan

By |

Prof. Huan’s research broadly revolves around uncertainty quantification, data-driven modeling, and numerical optimization. He focuses on methods to bridge together models and data: e.g., optimal experimental design, Bayesian statistical inference, uncertainty propagation in high-dimensional settings, and algorithms that are robust to model misspecification. He seeks to develop efficient numerical methods that integrate computationally-intensive models with big data, and combine uncertainty quantification with machine learning to enable robust and reliable prediction, design, and decision-making.

Optimal experimental design seeks to identify experiments that produce the most valuable data. For example, when designing a combustion experiment to learn chemical kinetic parameters, design condition A maximizes the expected information gain. When Bayesian inference is performed on data from this experiment, we indeed obtain “tighter” posteriors (with less uncertainty) compared to those obtained from suboptimal design conditions B and C.

Shan Bao

By |

My research interests are to improve safety associated with motor-vehicle transportation by addressing both active safety (increased crash avoidance) and passive safety (increased crash protection) issues through the development and application of a wide range of research methodologies. These methodologies are targeted at developing a better understanding and modeling of driver behavior, including physical and cognitive attributes, driver decision-making processes and human intention prediction. I am currently interested in applying data science to study the following topics:
*Driver state detection and prediction;

*Improve user intersection with automated vehicle technologies;

*Communication and interaction between vehicle and vulnerable road users

*Driving style classification

*Human factors issues associated with connected and automated vehicle technologies

Where do drivers look when they are not paying attention to the road


Samuel K Handelman

By |

Samuel K Handelman, Ph.D., is Research Assistant Professor in the department of Internal Medicine, Gastroenterology, of Michigan Medicine at the University of Michigan, Ann Arbor. Prof. Handelman is focused on multi-omics approaches to drive precision/personalized-therapy and to predict population-level differences in the effectiveness of interventions. He tends to favor regression-style and hierarchical-clustering approaches, partially because he has a background in both statistics and in cladistics. His scientific monomania is for compensatory mechanisms and trade-offs in evolution, but he has a principled reason to focus on translational medicine: real understanding of these mechanisms goes all the way into the clinic. Anything less that clinical translation indicates that we don’t understand what drove the genetics of human populations.

Romesh Saigal

By |

Professor Saigal has held faculty positions at the Haas School of Business, Berkeley and the department of Industrial Engineering and Management Sciences at Northwestern University, has been a researcher at the Bell Telephone Laboratories and numerous short term visiting positions. He currently teaches courses in Financial Engineering. In the recent past he taught courses in optimization, and Management Science. His current research involves data based studies of operational problems in the areas of Finance, Transportation, Renewable Energy and Healthcare, with an emphasis on the management and pricing of risks. This involves the use of data analytics, optimization, stochastic processes and financial engineering tools. His earlier research involved theoretical investigation into interior point methods, large scale optimization and software development for mathematical programming. He is an author of two books on optimization and large set of publications in top refereed journals. He has been an associate editor of Management Science and is a member of SIAM, AMS and AAAS. He has served as the Director of the interdisciplinary Financial Engineering Program and as the Director of Interdisciplinary Professional Programs (now Integrative Design + Systems) at the College of Engineering.

Brenda Gillespie

By |

Brenda Gillespie, PhD, is Associate Director in Consulting for Statistics, Computing and Analytics Research (CSCAR) with a secondary appointment as Associate Research Professor in the department of Biostatistics in the School of Public Health at the University of Michigan, Ann Arbor. She provides statistical collaboration and support for numerous research projects at the University of Michigan. She teaches Biostatistics courses as well as CSCAR short courses in survival analysis, regression analysis, sample size calculation, generalized linear models, meta-analysis, and statistical ethics. Her major areas of expertise are clinical trials and survival analysis.

Prof. Gillespie’s research interests are in the area of censored data and clinical trials. One research interest concerns the application of categorical regression models to the case of censored survival data. This technique is useful in modeling the hazard function (instead of treating it as a nuisance parameter, as in Cox proportional hazards regression), or in the situation where time-related interactions (i.e., non-proportional hazards) are present. An investigation comparing various categorical modeling strategies is currently in progress.

Another area of interest is the analysis of cross-over trials with censored data. Brenda has developed (with M. Feingold) a set of nonparametric methods for testing and estimation in this setting. Our methods out-perform previous methods in most cases.

Zeina Mneimneh

By |

Dr. Zeina Mneimneh is Assistant Research Scientist in the University of Michigan Survey Research Center.

Her research focuses on the use of social media and neighborhood contextual information to study social and health science topics and involves a collaboration between Michigan and Georgetown University.

Kevin Dombkowski

By |

Kevin J. Dombkowski, DrPH., MS, is Research Professor with the Child Health Evaluation and Research (CHEAR) Center within the University of Michigan Department of Pediatrics.   He is a health services researcher working extensively with public health information systems and large administrative claims databases.  

Kevin’s primary research focus is conducting population-based interventions aimed at improving the health of children, especially those with chronic conditions.  Much of his work has focused on evaluating the feasibility and accuracy of using administrative claims data to identify children with chronic conditions by linking these data with clinical and public health systems.  Many of these projects have linked claims, immunization registries, newborn screening, birth records and death records to conduct population-based evaluations of health services.  He has also applied these approaches to assess the statewide prevalence of chronic conditions such as asthma, sickle cell disease, and inflammatory bowel disease in Michigan as well as other states.  Kevin is currently collaborating with Michigan State University on the design and development of the Flint Lead Exposure Registry (FLExR) information architecture.

Kevin’s research interests also include registry-based interventions to improve the timeliness of vaccinations through automated reminder and recall systems.  He has led numerous collaborations with the Michigan Department of Health and Human Services (MDHHS), including several CDC-funded initiatives using the Michigan Care Improvement Registry (MCIR).  Through this collaboration, Kevin tested a statewide intervention aimed at increasing influenza vaccination among children with chronic conditions during the 2009 influenza pandemic.  Kevin is currently collaborating with MDHHS to evaluate MCIR data quality as immunization providers across Michigan adopt real-time, bi-directional messaging between electronic health records and MCIR.   He is conducting a similar statewide evaluation as new messaging protocols are adopted by electronic laboratory systems for reporting blood lead testing results to MDHHS.

Emily Mower Provost

By |

Research in the CHAI lab focuses on emotion modeling (classification and perception) and assistive technology (bipolar disorder and aphasia).

Behavioral Signal Processing Approach to Modeling Human-centered Data

Behavioral Signal Processing Approach to Modeling Human-centered Data

Suleyman Uludag

By |

My research spans security, privacy, and optimization of data collection particularly as applied to the Smart Grid, an augmented and enhanced paradigm for the conventional power grid. I am particularly interested in optimization approaches that take a notion of security and/or privacy into the modeling explicitly. At the intersection of the Intelligent Transportation Systems, Smart Grid, and Smart Cities, I am interested in data privacy and energy usage in smart parking lots. Protection of data and availability, especially under assault through a Denial-of-Service attacks, represents another dimension of my area of research interests. I am working on developing data privacy-aware bidding applications for the Smart Grid Demand Response systems without relying on trusted third parties. Finally, I am interested in educational and pedagogical research about teaching computer science, Smart Grid, cyber security, and data privacy.

This figure shows the data collection model I used in developing a practical and secure Machine-to-Machine data collection protocol for the Smart Grid.

This figure shows the data collection model I used in developing a practical and secure
Machine-to-Machine data collection protocol for the Smart Grid.

Jason Mars

By |

Jason Mars is a professor of computer science at the University of Michigan where he directs Clarity Lab, one of the best places in the world to be trained in A.I. and system design. Jason is also co-founder and CEO of Clinc, the cutting-edge A.I. startup that developed the world’s most advanced conversational AI.

Jason has devoted his career to solving difficult real-world problems, building some of the worlds most sophisticated salable systems for A.I., computer vision, and natural language processing. Prior to University of Michigan, Jason was a professor at UCSD. He also worked at Google and Intel.

Jason’s work constructing large-scale A.I. and deep learning-based systems and technology has been recognized globally and continues to have a significant impact on industry and academia. Jason holds a PhD in Computer Science from UVA.